Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T10:12:14.683Z Has data issue: false hasContentIssue false

Solution-Processed Inorganic Transistors and Sub-Micron Non-Lithographic Patterning using Nanoparticle Inks

Published online by Cambridge University Press:  21 February 2011

Brent A. Ridley
Affiliation:
MIT Media Laboratory, 20 Ames Street, Cambridge, A 02139
Babak Nivi
Affiliation:
MIT Media Laboratory, 20 Ames Street, Cambridge, A 02139
Brian N. Hubert
Affiliation:
MIT Media Laboratory, 20 Ames Street, Cambridge, A 02139
Colin A. Bulthaup
Affiliation:
MIT Media Laboratory, 20 Ames Street, Cambridge, A 02139
Eric J. Wilhelm
Affiliation:
MIT Media Laboratory, 20 Ames Street, Cambridge, A 02139
Joseph M. Jacobson
Affiliation:
MIT Media Laboratory, 20 Ames Street, Cambridge, A 02139
Get access

Abstract

Pyridine solutions of CdSe nanocrystals were solution-deposited in the fabrication of thin film transistors (TFTs). A peak mobility of 1 cm2V−1s−1 and an ON/OFF ratio of 3×104 were observed for TFTs processed at 350 °C. The nanocrystals acted as a precursor to the bulk material, coalescing to form a semiconductor thin film when heated at plastic-compatible temperatures. Single crystalline regions several hundred times the size of the original semiconductor nanocrystals were observed for films processed at 350 °C. We also report a process for direct liquid phase deposition and patterning of nanoparticle inks at sub-micron resolutions by elastomeric embossing and AFM nanospotting. These results suggest that microelectronic devices produced from nanoparticle-based inks can enjoy the processing advantages usually associated with organic materials while retaining the performance advantages typically associated with inorganic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ridley, B.A., Nivi, B., Jacobson, J.M., Science 286, 746 (1999).Google Scholar
2. Kagan, C. R., Mitzi, D. B., Dimitrakopoulos, C. D., Science 286, 945 (1999).Google Scholar
3. Service, R.F., Science 278, 383 (1997).Google Scholar
4. Lin, Y.-Y., Gundlach, D.J., Nelson, S.F., Jackson, T.N, IEEE Electron Device Lett. 18, 606 (1997).Google Scholar
5. Gamier, F., Phil. Trans. R. Soc. Lond. A 355, 815 (1997).Google Scholar
6. Mat. Res. Soc. Symp. Proc. 206, 271 (1991).Google Scholar
7. Goldstein, A.N, Echer, C.M., Alivisatos, A.P., Science 256, 1425 (1992).Google Scholar
8. Goldstein, A.N., Appl. Phys. A 62, 33 (1996).Google Scholar
9. Alivisatos, A.P., MRS Bull 23, 18 (February 1998).Google Scholar
10. Fuller, S.B., Jacobson, J.M., conference presentation to be given at IEEE MEMS-2000, Miyazaki, Japan (January 2000).Google Scholar
11. Murray, C.B., Norris, D..J., Bawendi, M.G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
12. Mat. Res. Soc. Symp. Proc. 272, 229 (1992).Google Scholar
13. Herron, N., Calabrese, J.C., Farneth, W.E., Wang, Y., Science 259, 1426 (1993).Google Scholar
14. Behrens, S. et al., Angew. Chem. Int. Ed. Engl. 35, 2215 (1996).Google Scholar
15. Katari, J.E. Bowen, Colvin, V.L., Alivisatos, A.P., J. Phys. Chem. 98, 4109 (1994).Google Scholar
16. Kuno, M., Lee, J.K., Dabbousi, B.O., Mikulec, F.V., Bawendi, M.G., J. Chem. Phys. 106, 9869 (1997).Google Scholar
17. Mat. Res. Soc. Symp. Proc. 382, 461 (1995).Google Scholar
18. Calster, A. Van, Vervaet, A., Rycke, I. De, Baets, J. De, J. Cryst. Growth 86, 924 (1988).Google Scholar
19. Brody, T.P., Information Display 2, 5 (1992).Google Scholar