Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T22:43:48.447Z Has data issue: false hasContentIssue false

Solvent–Controlled Helicity in Self-Assembling Rosette Nanotubes

Published online by Cambridge University Press:  01 February 2011

Ross S Johnson
Affiliation:
rossj@ualberta.caUniversity of AlbertaNational Institute for Nanotechnology ECERF: 9107-116th Street Edmonton AB T6G 2V4Canada
Takeshi Yamazaki
Affiliation:
takeshi@ualberta.ca, University of Alberta, National Institute for Nanotechnology, ECERF: 9107-116th Street, Edmonton, AB, T6G 2V4, Canada
Andriy Kovalenko
Affiliation:
andriy.kovalenko@nrc-cnrc.gc.ca, University of Alberta, National Institute for Nanotechnology, ECERF: 9107-116th Street, Edmonton, AB, T6G 2V4, Canada
Hicham Fenniri
Affiliation:
hicham.fenniri@ualberta.ca, University of Alberta, National Institute for Nanotechnology, ECERF: 9107-116th Street, Edmonton, AB, T6G 2V4, Canada
Get access

Abstract

A newly designed module was synthesized and found to self-assemble into rosette nanotubes (RN) in both water and methanol. Characterization using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) established the formation of analogous RNs in both solvents. However, the chiroptical outcome of the assemblies, observed by circular dichrosim (CD) spectroscopy, was found to be mirror image based solely on the solvent used. Preliminary molecular modeling studies indicated the formation of M and P helical rosette nanotubes, in agreement with the experimental observations. This work represents the first example of solvent-controlled helicity in a self-assembling supramolecular system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lorenzo, M. O., Baddeley, C. J., Muryn, C., and Raval, R., Nature 404, 376379 (2000).Google Scholar
2.(a) Kauranen, M., Veerbiest, T., Bouttoon, C., Teerenstra, M. N., Clays, K., Schouten, A. J., Nolte, R. J. M., and Persoons, A., Science 270, 966969 (1995). (b) T. Verbiest, S. V. Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. J. Katz, and A. Persoons, Science 282, 913-915 (1998).Google Scholar
3.(a) Tanatani, A., Mio, M. J., and Moore, J. S., J. Am. Chem. Soc. 123, 17921793 (2001). (b) V. V. Borovkov, G. A. Hembury, and Y. Inoue, Acc. Chem. Res. 37, 449–459 (2004). (c) J. M. Rivera, S. L. Craig, T. Martin, and J. Jr. Rebek, Angew. Chem. Int. Ed. 39, 2130– 2132 (2000). (d) Y. Kikuchi, K. Kobayashi, and Y. Aoyama, J. Am. Chem. Soc. 114, 1351–1358 (1992).Google Scholar
4.(a) Iftime, G., Labarthet, F. L., Natanshon, A., and Rochon, P., J. Am. Chem. Soc. 122, 1264612650 (2000). (b) A. E. Holmes, H. Barcena, and J. W. Canary, Adv. Supramol. Chem. 8, 43–78 (2002). (c) J. W. Canary, and S. Zahn, TRENDS Biotech. 19, 251–255 (2001). (d) J. Tabei, R. Nomura, F. Sanda, and T. Masuda, Macromolecules 37, 1175– 1179 (2004).Google Scholar
5. Mateos-Timoneda, M. A., Crego-Calama, M., Reinhoudt, D. R., Chem. Soc. Rev. 33, 363372 (2004).Google Scholar
6.(a) Fenniri, H., Deng, B. L., Ribbe, A. E., Hallenga, K., Jacob, J., and Thiyagarajan, P., Proc. Natl. Acad. Sci. USA. 99, 64876492 (2002). (b) J. G. Moralez, J. Raez, T. Yamazaki, R. K. Motkuri, A. Kovalenko, and H. Fenniri, J. Am. Chem. Soc. 127, 83078309 (2005). (c) H. Fenniri, B. L. Deng, and A. E. Ribbe, J. Am. Chem. Soc. 124, 11064-11072 (2002).Google Scholar