Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T02:22:17.434Z Has data issue: false hasContentIssue false

Solvothermal Preparation, Processing, and Characterization of Nanocrystalline CuIn1-xAlxSe2 Materials

Published online by Cambridge University Press:  31 January 2011

Christopher L. Exstrom
Affiliation:
exstromc@unk.edu, University of Nebraska at Kearney, Chemistry, Kearney, Nebraska, United States
Jiří Olejníček
Affiliation:
olejn@fzu.cz, University of Nebraska at Kearney, Chemistry, Kearney, Nebraska, United States
Scott A. Darveau
Affiliation:
darveausa@unk.edu, University of Nebraska at Kearney, Chemistry, Kearney, Nebraska, United States
Anatole Mirasano
Affiliation:
mirasanoa1@unk.edu, University of Nebraska at Kearney, Chemistry, Kearney, Nebraska, United States
David S. Paprocki
Affiliation:
paprockids@unk.edu, University of Nebraska at Kearney, Chemistry, Kearney, Nebraska, United States
Megan L Schliefert
Affiliation:
schliefertml@unk.edu, University of Nebraska at Kearney, Chemistry, Kearney, Nebraska, United States
Matt A. Ingersoll
Affiliation:
ingersollma@unk.edu, University of Nebraska at Kearney, Chemistry, Kearney, Nebraska, United States
Laura E. Slaymaker
Affiliation:
slaymakerle@unk.edu, University of Nebraska at Kearney, Chemistry, Kearney, Nebraska, United States
Rodney J. Soukup
Affiliation:
rsoukup1@unl.edu, University of Nebraska-Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Natale J. Ianno
Affiliation:
nianno@unl.edu, University of Nebraska-Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Chad A. Kamler
Affiliation:
chadkamler@gmail.com, University of Nebraska-Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Get access

Abstract

We report solvothermal preparations of nanocrystalline CuIn1-xAlxSe2 materials prepared from the reaction of Se, CuX2 (X = Cl or stearate), InCl3, and Al(oleate)3 in refluxing oleylamine for 30 minutes to 3 hours. Scanning electron microscopy (SEM) images reveal morphologies consisting of hexagonal plates (100-400 nm diameter) with smaller isomorphic nodules. Micro-Raman spectroscopy, x-ray diffraction, and optical bandgap data are consistent with Al3+ incorporation into the chalcopyrite structure. For aluminum-containing reactions, product Al/(In+Al) ratios are estimated to be between 0.15 and 0.35 regardless of the indium-aluminum stoichiometry employed in the reaction. When Se is added to the reaction last, the reaction pathway involves an early-formed Cu2-xSe(s) intermediate that appears to react with In- and Al-containing species simultaneously. This intermediate is avoided when heating InCl3, Al(oleate)3, and Se together prior to Cu addition, but the final product includes Se contamination that must be removed or reacted by annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Contreras, M.A. Ramanathan, K. AbuShama, J. Hasoon, F. Young, D.L. Egass, B. Noufi, R. Prog. Photovolt. Res. Appl. 13, 209(2005).Google Scholar
2. Shafarman, W.N. Klenk, R. McCandless, B.E. J. Appl. Phys. 79, 7324(1996).Google Scholar
3. Rau, U. Schmidt, M. Jasenek, A. Hanna, G. Schock, H.W. Sol. Energy Mater. Sol. Cells 67, 137(2001).Google Scholar
4. Wei, S.H. Zunger, A. J. Appl. Phys. 78, 3846(1995).Google Scholar
5. Marsillac, S. Paulson, P.D. Haimbodi, M.W. Birkmire, R.W. Shafarman, W.N. Appl. Phys. Lett. 81, 1350(2002).Google Scholar
6. Reddy, Y.B.K. Raja, V.S. Sreedhar, B. J. Phys. D.: Appl. Phys. 39, 5124(2006).Google Scholar
7. Kachouane, A. Halgand, E. Marsillac, S. Bernède, J.C., Phys. Chem. News 40, 1(2008).Google Scholar
8. Munir, B. Wibowo, R.A. Lee, E.S. Kim, K.H. J. Ceram. Process. Res. 8, 252(2007).Google Scholar
9. Itoh, F. Saitoh, O. Kita, M. Nagamori, H. Oike, H. Sol. Energy Mater. Sol. Cells 50, 119(1998).Google Scholar
10. Halgand, E. J.C. Bernéde, Marsillac, S. Kessler, J. Thin Solid Films 480-481, 443(2005).Google Scholar
11. Jost, S. Hergert, F. Hock, R. Purwins, M. Enderle, R. Phys Status Solidi A 203, 2581(2006).Google Scholar
12. Yun, J.H. Chalapathy, R.B.V. Lee, J.C. Song, J. Yoon, K.H. Diffusion Defect Data – Solid State Data, Pt. B 124-126, 975(2007).Google Scholar
13. López-García, J., Guillén, C., Thin Solid Films 517, 2240(2009).Google Scholar
14. Kavitha, B. Dhanam, M. Mater. Sci. Eng. B 140, 59(2007).Google Scholar
15. Guo, Q. Agrawal, R. Hillhouse, H.W. PCT Int. Appl. WO 2008021604 A2 20080221 (2008).Google Scholar
16. Robinet, L. Corbeil, M.C. Stud. Conserv. 48, 23(2002).Google Scholar
17. Exstrom, C.L. Darveau, S.A. Martinez-Skinner, A.L., Ingersoll, M.A. Olejnicek, J. Mirasano, A. Haussler, A.T. Huguenin-Love, J.L., Kamler, C.A. Diaz, M. Ianno, N.J. Soukup, R.J. Proc. 33rd IEEE Photovolt. Spec. Conf., (2008).Google Scholar
18. Murray, C.B. Kagan, C.R. Bawendi, M.G. Ann. Rev. Mater. Sci. 30, 545(2000).Google Scholar
19. Zaretskaya, E.P. Gremenok, V.F. Riede, V. Schmitz, W. Bente, K. Zalesski, V.B. Ermakov, O.V. J. Phys. Chem. Solids 64, 1989(2003).Google Scholar
20. Weszka, J. Daniel, P. Burien, A.M. Burien, A. Elechower, M. Nguyen, A.T. J. Non-Crystalline Solids 315, 219(2003).Google Scholar
21. Gebicki, W. Igalson, M. Zajac, W. Trykozko, R. J. Phys. D.: Appl. Phys. 23, 964(1990).Google Scholar
22. Shirakata, S. Miyake, H. Jpn. J. Appl. Phys. 41, 77(2002).Google Scholar