Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T01:03:41.116Z Has data issue: false hasContentIssue false

Some Aspects of the Nonstoichiometric and Thermodynamic Behavior of the YBa2Cu3Oz System

Published online by Cambridge University Press:  21 February 2011

M. Tetenbaum
Affiliation:
Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439
L. Curtiss
Affiliation:
Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439
B. Czech
Affiliation:
Summer 1988 Undergraduate Research Participant from Eastern Washington University, Cheney, Washington 99004
B. Tani
Affiliation:
Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439
M. Blander
Affiliation:
Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439
Get access

Abstract

The nonstoichiometric and thermodynamic behavior of the YBa2Cu3Ox system as a function of oxygen partial pressure and temperature is being investigated by means of a coulometric titration technique. The oxygen content of the superconductor can be varied coulometrically by well-defined small amounts and the equilibrium partial pressures determined from the EMF. The oxygen stoichiometry in YBa2Cu3Ox as a function of oxygen partial pressure shows a change of curvature around x = 6.55–6.75 and an inflection around x ≅ 6.65 at temperatures between 400–500°C. These new low temperature data are consistent with the presence of a miscibility gap at lower temperatures, which is similar to that postulated in several theoretical papers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, J. K., Segre, C. U., Zhang, K., Kleefisch, M. S., Phys. Rev. B 36, 3608 (1987); (b) J. D. Jorgensen, H. Shaked, D. G. Hinks, B. Dabrowski, B. W. Veal, A. P. Paulikas, L. G. Nowicki, G. W. Crabtree, W. K. Kwok, L. H. Nunez, H. Claus, Physica C 153–155, 578 (1978).Google Scholar
2. Cava, R. J., Batlogg, B., Cbhn, C. H., Rietmann, E. A., Zahurak, S. M., and Werder, D. J., Nature 329, 423 (1987); Phys. Rev. B 36, 5719 (1987).Google Scholar
3. Tarascon, J. M., McKinnon, W. R., Greene, L. H., Bagley, G. W., Vogel, E. M., and LePage, Y., High Temperature Superconductivity, Pittsburgh, PA (1987) p. 956.Google Scholar
4. Chen, C. H., Werder, D. J., Schneemeyer, L. F., Gallagher, P. K., and Waszczak, J. V., Phys. Rev. B 38, 2888 (1988).Google Scholar
5. Werder, D. J., Chen, C. H., Cava, R. J., and Batlogg, B., Phys. Rev. B 38, 5130 (1988).Google Scholar
6. Tetenbaum, M., Brown, A. P., Blander, M., Ceramic Superconductors, Vol. II, Proceedings of the Ceramic Superconductivity Symposium, American Ceramic Society, 5159 (1988).Google Scholar
7. Kishio, K., Shimoyama, J., Hasegawa, T., Kitazawa, K., and Fueki, K., Jap. J. Appl. Phys. 26, L1228 (1987).Google Scholar
8. Gallagher, P. K., Advanced Ceramic Materials 2, 632 (1987).Google Scholar
9. Strobel, P., Capponi, J. J., Marezio, M., and Monod, P., Solid State Commun. 64, 513 (1987).Google Scholar
10. Spechit, E. D., Sparks, C. J., Dhere, A. G., Brynestad, J., 0. Cavin, B., Kroeger, D. M., and Oye, H. A., Phys. Rev. B 37, 7426 (1988).Google Scholar
11. Curtiss, L. A., Brun, T. O., and Gruen, D. M., Inorganic Chemistry 27, 1421 (1988).Google Scholar
12. Khachaturyan, A. G., Semenovskaya, S. V., and Morris, J. W. Jr., Phys. Rev. B 37, 2243 (1988).Google Scholar
13. Wille, L. T., Berera, A., and Fontaine, D. de, Phys. Rev. Lett. 60, 1065 (1988).Google Scholar
14. Treyakov, Y. D. and Rapp, R. A., Trans. Met. Soc. of AIME 245, 1235 (1969).Google Scholar
15. Singh, J. P., private communication.Google Scholar