Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T10:14:58.612Z Has data issue: false hasContentIssue false

Spatial and Temporal Probes of Deformation and Fracture at Interfaces

Published online by Cambridge University Press:  03 September 2012

J. T. Dickinson
Affiliation:
Physics Department, Washington State University, Pullman, WA 99164-2814
S. C. Langford
Affiliation:
Physics Department, Washington State University, Pullman, WA 99164-2814
Louis Scudiero
Affiliation:
Physics Department, Washington State University, Pullman, WA 99164-2814
Get access

Abstract

During the peel of a ductile material from a rigid substrate, a number of instabilities can arise in the shape and motion of the peel front. For instance, void formation, viscous fingering, and fibril formation and bifurcation can modulate the local rate of detachment between the two materials. These fluctuations affect the rate of energy dissipation and depend directly on the micromechanics of the detachment zone. Exploiting the consequences of contact charging between dissimilar materials, we have developed sensitive methods for detecting fluctuations during interfacial failure. We have also developed a sensitive probe of ductile deformation in reactive metals and use these measurements to probe energy dissipation during interfacial failure. We present examples of chaotic behavior and discuss the relation between these results with our current understanding of energy dissipation during interfacial crack growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dickinson, J. T., in Non-Destructive Testing of Fibre-Reinforced Plastics Composites, edited by Summerscales, John (Elsevier Applied Science, London, 1990), pp. 429482.Google Scholar
2. Zimmerman, K. A., Langford, S. C., and Dickinson, J. T., J. Appl. Phys. 70, 4808 (1991).Google Scholar
3. Good, R. J. and Gupta, R. K., J. Adhesion 26, 13 (1988).Google Scholar
4. Evans, A. G. and Hutchinson, J. W., Acta Metall. 37, 909 (1989).Google Scholar
5. Chen, Z. and Mecholsky, J. J. Jr., J. Mater. Res. 8, 2362 (1993).Google Scholar
6. Evans, A. G. and Dalgleish, B. J., Mater. Sci. Engin. A 162, 1 (1993).Google Scholar
7. Kim, J., Kim, K. S., and Kim, Y. H., J. Adhesion Sci. Technol. 3, 174 (1989).Google Scholar
8. Evans, A. G., Dalgleish, B. J., He, M., and Hutchinson, J. W., Acta Metall. 37, 3249 (1989).Google Scholar
9. Reimanis, I. E., Dalgleish, B. J., and Evans, A. G., Acta Metall. Mater. 32, 3133 (1991).Google Scholar
10. Scudiero, Louis, Dickinson, J. T., Jensen, L.C., and Langford, S. C., to appear in J. Adhesion Sci. Technol.Google Scholar
11. Lee, Sunkyo, Jensen, L. C., Langford, S. C., and Dickinson, J. T., to appear in J. Adhesion Sci. Technol.Google Scholar
12. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical Recipes in Pascal: The Art of Scientific Computing (Cambridge University, Cambridge, 1981), pp. 473479.Google Scholar
13. Symon, Keith R., Mechanics, 3rd Ed. (Addison Wesley, Reading, MA, 1971), pp. 50ff.Google Scholar
14. Ziel, Aldert Van der, Noise: Sources, Characterization, Measurement, (Prentice-Hall, Englewood Cliffs, NJ, 1970), pp. 1618.Google Scholar
15. Schuster, Heinz Georg, Deterministic Chaos: An Introduction, 2nd Ed. (VCH, Weinheim, Germany, 1988), pp. 116.Google Scholar
16. Moon, Francis C., Chaotic and Fractal Dynamics, (John Wiley, New York, 1992), pp. 78-82, 307310.Google Scholar
17. Grassberger, P. and Procaccia, I., Physica 2D, 189 (1983).Google Scholar
18. The only exceptions (non-chaotic systems with non-integral dimensions) of which we are aware are dissipative systems driven simultaneously at two incommensurate frequencies: Ditto, W. L., Spano, M. L., Savage, H. T., Rauseo, S. N., Heagy, J., and Ott, E., Phys. Rev. Lett. 655), 533 (1990). The peeling process (which can be viewed as dissipative process driven at zero frequency) is not likely to constitute another exception.Google Scholar
19. Ben-Mizrachi, Avraham and Procaccia, Itamar, Phys. Rev. A 29, 975 (1984).Google Scholar
20. Nakahara, Sumio, Langford, S. C., and Dickinson, J. T., submitted to J. Mater. Res.Google Scholar
21. Dickinson, J. T., Jensen, L. C., Langford, S. C., and Hoagland, R. G., J. Mater. Res. 9, 1156 (1994).Google Scholar
22. Sujak, B. and Gieroszyriski, A., Acta Phys. Polon. 28, 249 (1968).Google Scholar
23. Baxter, W. J., Fatigue Engin. Mater. Struc. 1, 343 (1979).Google Scholar
24. Hagena, O. F., Knop, G., Fromknecht, R., and Linker, G., J. Vac. Sci. Technol. A 12, 282 (1994).Google Scholar
25. K'Singam, L. A., Dickinson, J. T., and Jensen, L. C., J. Am. Ceramics Soc. 68, 510 (1985).Google Scholar
26. Doering, D. L., Langford, S. C., Dickinson, J. T., and Xiong-Skiba, P., J. Vac. Sci. Technol. A. 8, 2401 (1990).Google Scholar
27. Mecholsky, J. J. Jr, Freimam, S. W., and Rice, R. W., J. Mater. Sci. 11, 1310 (1976).Google Scholar
28. Hertzberg, Richard W., Deformation and Fracture Mechanics of Engineering Materials, 3rd Ed. (John Wiley, New York, 1989), pp. 8183.Google Scholar
29. Evans, A. G. and Dalgleish, B. J., Acta Metall. Mater. 40, S295 (1992).Google Scholar
30. McCarroll, B. M., J. Chem. Phys. 50, 4758 (1969).Google Scholar
31. Kasemo, B., Tömqvist, E., and Walldén, L., Mater. Sci. Engin. 42, 23 (1980).Google Scholar
32. Prince, R. H. and Persaud, R., Surf. Sci. 207, 207 (1988).Google Scholar
33. Namba, H., Darville, J., and Gilles, J. M., Surf. Sci. 108, 446 (1981).Google Scholar
34. Allen, G. C., Tucker, P. M., Hayden, B. E., and Klemperer, D. F., Surf. Sci. 102, 207 (1981).Google Scholar
35. Gessell, T. F. and Arakawa, E. T., Surf. Sci. 33, 419 (1972).Google Scholar
36. Underwood, E. E. and Banerji, K., Mater. Sci. Engin. 80, 1 (1986).Google Scholar
37. Warner, C. P. and Bonnell, D. A., in Interface Dynamics and Growth, edited by Liang, K. S., Anderson, M. P., Bruinsma, R. F., and Scoles, G., (Materials Research Society, Pittsburgh, PA, 1992), 393. [Mater. Res. Soc. Symp. Proc. 237]Google Scholar