Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T08:46:02.507Z Has data issue: false hasContentIssue false

A Spectroscopic Study of the Conditions Required for Plasma Etching of Aluminium in BCl3 and Cl2 Plasmas

Published online by Cambridge University Press:  25 February 2011

D. C. W. Blaikley
Affiliation:
Engineering Sciences Division, Harwell Laboratory, United Kingdom Atomic Energy Authority, Oxfordshire OXI ORA, England.
G. Hancock
Affiliation:
Department of Physical Chemistry, University of Oxford, South Parks Road, Oxford OXI 3QZ, England.
I. Hussla
Affiliation:
Leybold-Heraeus GmbH, Wilhelm-Rohn-Strasse 25, D-6450 Hanau 1, W. Germany.
W. Katzschner
Affiliation:
Fraunhofer Institut fur Mikrostrukturtechnik, Dillenburger Strasse 53, D-1000 Berlin 33, W. Germany.
Get access

Abstract

Optical Emission Spectroscopy (OES) with argon actinometry has been used to study the influence of machine parameters on the composition of a BCl3 RF plasma discharge in the absence and presence of aluminium. Two steady state models are proposed to account for the appearance of the various species seen, and to explain their relative abundances in response to changes in power and pressure. The validity of the actinometric technique for measuring relative changes in ground state concentrations is discussed also.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heinecke, R. A. H., Solid State Technol., 21(4), 104 (1978).Google Scholar
2. Choe, D., Knapp, C. and Jacob, A., Solid State Technol., 28(3), 165 (1985).Google Scholar
3. Danner, D. A., Dalvie, M. and Hess, D.W., J. Electrochem. Soc., 134, 669 (1987).Google Scholar
4. Lehmann, H. W. and Widmer, R., Microelectronic Engineering, 1, 3 (1983).Google Scholar
5. Dreyfuss, R. W., Jasinski, J.M., Walkup, R.E. and Selwyn, G.S., Pure and Appl. Chem., 57, 1265 (1985).Google Scholar
6. Gottscho, R. A. and Miller, T.A., Pure and Appl. Chem., 56, 189 (1984).Google Scholar
7. Park, K. O., Proc. 4th Symp. on Plasma Processing, The Electrochemical Society Inc., Pennington, USA, Proc. Vol.83(10), 300 (1983).Google Scholar
8. d'Agostino, R., Cramarossa, F., De Benedictis, S. and Fracassi, F., Plasma Chem. Plasma Proc., 4, 163 (1984).Google Scholar
9. Park, K.O. and Rock, F.C., J. Electrochem. Soc., 131, 214 (1984).Google Scholar
10. Curtis, B.J., Solid State Technol., 23(4), 129 (1980).Google Scholar
11. Coburn, J.W. and Chen, M., J. Appl. Phys., 51, 3134 (1980).Google Scholar
12. Holzmann, R.T. and Morris, W.F., J. Chem. Phys., 29, 677 (1958); A.G. Briggs, M.S. Reason and A.G. Massey, J. Inorg. Nucl. Chem., 37, 313 (1975).Google Scholar
13. Desseaux, O., Goumand, P. and Pannetier, G., C.R. Acad. Sci., Paris, 265C, 480, 1967; Bull. Soc. Chim. Fr., 447 (1968).Google Scholar
14. Plumb, I.S. and Ryan, K.R., Plasma Chem. Plasma Proc., 6, 205 (1986).Google Scholar