Published online by Cambridge University Press: 25 February 2011
We review spin polarised multiple scattering theory and show how it can provide a description of magnetic anisotropic effects in metallic systems. An interpretation in terms of the leading relativistic corrections is given; namely the interaction between spin-orbit coupling and spin polarisation. It is pointed out that it is straightforward to vary the d-rection of spin polarisation within this formalism. As simple illustrations, the cases of two and three impurities in a non-interacting relativistic' electron gas are outlined and the origin of pseudo-dipolar and Dzyaloshinski-Moriya anisotropy highlighted. We go on to compare and contrast estimates of magneto-crystalline anisotropies of transition metals with those from alternative methods. Finally we discuss the paramagnetic spin susceptibility of metals within this framework and show that this work is complementary to magnetic anisotropy energy calculations. A generalised Stoner condition for the onset and direction of the magnetisation is given. Calculations for h.c.p. metals cobalt, scandium and yttrium are presented. We conclude by pointing out that this approach can be extended to set up a theory for the dynamical susceptibility with consequent implications for anisotropy of spin wave excitations.