Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T04:39:31.414Z Has data issue: false hasContentIssue false

Spin-Polarized Relativistic Band Structure Calculations for Dilute and Concentrated Disordered Alloys

Published online by Cambridge University Press:  25 February 2011

H. Ebert
Affiliation:
Siemens AG, Central Research Laboratories, ZFE BT MR 11, Postfach 3220, D-8520 Erlangen, FRG
H. Akai
Affiliation:
Department of Physics, Nara Medical University Kashihara, Nara 634, Japan
Get access

Abstract

Applications of the spin-polarized relativistic version of multiple scattering theory (SPRKKR) to study the electronic properties of dilute and concentrated disordered alloys are presented. This approach, developed recently, allows to investigate magnetic systems containing heavy elements and also gives access to a detailed discussion of phenomena, which are linked to the simultanous presence of spin-polarisation and spin-orbit coupling. This is demonstrated by discussing the hyperfine properties of 5d-transition metals dissolved substitutionally in Fe, where pronounced relativistic effects could be found. In addition the magnetic X-ray dichroism (MXD), denoting the difference in absorption of left and right circularly polarized radiation, is studied for these dilute alloys.

To be able to deal also with concentrated alloys, we have combined the Coherent Potential Approximation (CPA) alloy theory with the SPRKKR-formalism. Results for the spin-orbit induced orbital contributions to the magnetic moments as well as the MXD in FexCol-x and CoxPtl-x clearly show that remarkable relativistic effects are present even for relatively light elements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Richter, M. and Eschrig, H., Solid State Commun. 72, 263 (1989).CrossRefGoogle Scholar
2. Eschrig, H., Seifert, G., and Ziesche, P., Solid State Commun. 56, 777 (1985).Google Scholar
3. MacDonald, A. H. and Vosko, S. H., J. Phys. C: Solid State Phys. 12, 2977 (1979).Google Scholar
4. Rose, M. E., Relativistic Electron Theory, Wiley, New York, 1961.Google Scholar
5. Faulkner, J. S. and Stocks, G. M., Phys. Rev. B 21, 3222 (1980).Google Scholar
6. Strange, P., Ebert, H., Staunton, J. B., and Gyorffy, B. L., J. Phys.: Condensed Matter 1, 2959 (1989).Google Scholar
7. Tamura, E., Phys. Rev. B, in press, 1992.Google Scholar
8. Drittler, B., Ebert, H., Zeller, R., and Dederichs, P. H., Phys. Rev. B 67, 4573 (1990).Google Scholar
9. Staunton, J. B., Gyorffy, B. L., and Weinberger, P., J. Phys. F: Met. Phys. 10, 2665 (1980).Google Scholar
10. Ebert, H., Drittler, B., and Akai, H., J. Magn. Magn. Materials, in press, 1992.Google Scholar
11. Singh, M., Callaway, J., and Wang, C. S., Phys. Rev. B 14, 1214 (1976).Google Scholar
12. Breit, G., Phys. Rev. 35, 1447 (1930).CrossRefGoogle Scholar
13. Durham, P. J., The Electronic Structure of Complex Systems, Plenum Press, New York, 1984, eds.: Phariseau, P. and Temmerman, W. M..Google Scholar
14. Ebert, H., Strange, P., and Gyorffy, B. L., Z. Physik B 73, 77 (1988).Google Scholar
15. Ebert, H. and Zeller, R., Phys. Rev. B 42, 2744 (1990).Google Scholar
16. Ebert, H., J. Phys.: Condensed Matter 1, 9111 (1989).Google Scholar
17. Campbell, I. A., Proc. Roy. Soc. (London) 89, 71 (1966).Google Scholar
18. Wienke, R., Schütz, G., and Ebert, H., J. Appl. Physics 69, 6147 (1991).CrossRefGoogle Scholar
19. Akai, H., Hyperfine Interactions 43, 255 (1988).Google Scholar
20. Schiitz, G. et al. , Z. Physik B 73, 67 (1988).Google Scholar
21. Ebert, H., Strange, P., and Gyorffy, B. L., J. Phys. F: Met. Phys. 18, L135 (1988).Google Scholar
22. Gehring, G. A. and Williams, H. C. W. L., J. Phys. F: Met. Phys. 4, 291 (1974).Google Scholar
23. Demangeat, C., J. Phys. F: Met. Phys. 5, 169 (1975).CrossRefGoogle Scholar
24. Bliigel, S., Akai, H., Zeller, R., and Dederichs, P. H., Phys. Rev. B 35, 3271 (1987).Google Scholar
25. Rao, G. N., Hyperfine Interactions 7, 141 (1979).Google Scholar
26. Abragam, A. and Pryce, M. H. L., Proc. Roy. Soc. (London) A 205, 135 (1951).Google Scholar
27. Schütz, G. et al. , Phys. Rev. Letters 58, 737 (1987).CrossRefGoogle Scholar
28. Ebert, H., Ruegg, S., Schütz, G., Wienke, R., and Zeper, W. B., J. Magn. Magn. Materials 93, 601 (1991).CrossRefGoogle Scholar
29. Akai, H., J. Phys.: Condensed Matter 1, 8045 (1989).Google Scholar
30. Schiitz, G., to be published.Google Scholar
31. Mills, R., Gray, L. J., and Kaplan, T., Phys. Rev. B 27, 3252 (1983).CrossRefGoogle Scholar