Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T01:05:43.211Z Has data issue: false hasContentIssue false

Sponge Phase Under Shear

Published online by Cambridge University Press:  10 February 2011

H. F. Mahjoub
Affiliation:
Laboratoire de Minéralogie-Cristallographie de Paris, Université P.-&-M. Curie, T 16, case 115, 4 pl Jussieu, 75252 Paris cédex 05, France
C. Bourgaux
Affiliation:
LURE, Batiment 209D, Centre Universitaire 91405 Orsay Cedex-France.
K. M. McGrath
Affiliation:
Laboratoire de Minéralogie-Cristallographie de Paris, Université P.-&-M. Curie, T 16, case 115, 4 pl Jussieu, 75252 Paris cédex 05, France Department of Physics, Princeton University, Princeton, NJ 08544
J.F. Tassin
Affiliation:
Laboratoire de Physico-Chimie Macromoléculaire, Université du Mans, avenue O. Messiaen, BP 35, 72017 Le Mans cédex, France
M. Kleman
Affiliation:
Laboratoire de Minéralogie-Cristallographie de Paris, Université P.-&-M. Curie, T 16, case 115, 4 pl Jussieu, 75252 Paris cédex 05, France
Get access

Abstract

The L3 phase under shear transforms to a lamellar phase L*α above some critical shear rate. We study the sequence of successive states (rheothinning, flow birefringence, transition region, lamellar) with simultaneous rheooptical methods, in situ X-ray scattering, and light microscopy observations. The transition region is biphasic, and the two phases display epitaxial relationship immediately after shearing is ceased.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cates, M. E., Roux, D., Andelman, D., Milner, S. T., and Safran, S. A., Europhys. Leu. 5, p. 733 (1988).Google Scholar
2. Roux, D., Coulon, C., Cates, M.E., J. Phys. Chem. 96, p. 41744187 (1992).Google Scholar
3. Diat, O., and Roux, D., Langmuir 11, p. 1392 (1995).Google Scholar
4. Snabre, P. and Porte, G., Europhys. Lett. 13, p. 642 (1990).Google Scholar
5. Piano, R. J., Safinya, C. R., Sirota, E. B., and Wenzel, L. J., Rev. Sei. Instrum. 4, p. 1309 (1993).Google Scholar
6. Cates, M. E., and Milner, S. T., Phys. Rev. Lett. 62, p. 1356 (1989).Google Scholar
7. Bruinsma, R. F. and Rabin, I., Phys. Rev. A 45, p.994 (1992).Google Scholar
8. Mahjoub, H. F., McGrath, K. M., and Kleman, M., Langmuir 12, p. 3131 (1996).Google Scholar
9. Porte, G., Delsanti, M., Billard, I., Skouri, M., Appell, J., Marignan, J., and Debeauvais, F., J. Phys. II France 1, p. 1101 (1991).Google Scholar
10. Goulian, M., and Milner, S. T., Phys. Rev. Lett. 74, p. 775 (1995).Google Scholar
11. Caillé, A., C. R. Acad. Sci. Paris B274, p. 891 (1972).Google Scholar
12. Quilliet, C., Blanc, C. and Kleman, M., Phys. Rev. Lett. 77 p. 522 (1996).Google Scholar
13. Blanc, C., private communicationGoogle Scholar
14. Waton, G., and Porte, G., J. Phys. II France 3, p. 515 (1993).Google Scholar
15. Lavrentovich, O. D., Quilliet, C., and Kleman, M., J. Phys. Chem. in pressGoogle Scholar