Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T10:00:20.256Z Has data issue: false hasContentIssue false

Spontaneous increase of electric conductivity of nanostructure dielectrics

Published online by Cambridge University Press:  01 February 2011

Martiros Lorikyan*
Affiliation:
lorikyan@mail.yerphi.am, Yerevan Physics Institute, Experimental Physics, 2 Alikhanian Br., Yerevan, 0036, Armenia
Get access

Abstract

In this report, phenomenon of acquisition of spontaneous electron conductivity (SEC) of porous CsBr is investigated and compared with that for porous CsI at the same experimental conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lorikyan, M.P. et al. , Izv. Akad.Nauk ArmSSR Fiz 6 297 (1967)Google Scholar
[2] Lorikyan, M. P. et al. , Nucl. Instr. and Meth. 122 (1974) 377 Google Scholar
[3] Lorikyan, M. P. et al. , Nucl. Instr. and Meth. 140 (1977) 505 Google Scholar
[4] Gukasyan, S. M. et al. , Nucl. Instrum. Methods 167 (1979) 427 Google Scholar
[5] Gukasyan, S. M. et al. , Nucl. Instrum. Methods 171 (1980) 469 Google Scholar
[6] Lorikyan, M. P. et al. , Nucl. Instrum. Methods A 340 (1994) 625 Google Scholar
[7] Lorikyan, M. P. et al. , Nucl. Instrum. Methods A 350 (1994) 244 Google Scholar
[8] Lorikyan, M.P. 1995 Phys.—Usp. 38 1995 1271–8110.1070/PU1995v038n11ABEH000120Google Scholar
[9] Lorikyan, M. P. Nucl. Instrum. Methods A 454 (2000) 257 10.1016/S0168-9002(00)00837-8Google Scholar
[10] Lorikyan, M. P. Nucl. Instrum. MethodsA 510 (2003) 150–710.1016/S0168-9002(03)01692-9Google Scholar
[11] Lorikyan, M. P. Nucl. Instrum. MethodsA 513 (2003) 394 10.1016/j.nima.2003.08.068Google Scholar
[12] Lorikyan, M. P. Nucl. Instrum. MethodsA 515 (2003) 701 10.1016/j.nima.2003.07.029Google Scholar
[13] Chianell, C. et al. , Nucl. Instrum. Methods A 373 (1988) 245 Google Scholar
[14] Malter, L. 1936 Phys. Rev. 50 48 10.1103/PhysRev.50.48Google Scholar
[15] Zernov, D. V. 1937 Zh. Eksp. Teor. Fiz. 17 1787 Google Scholar
[16] Stenglass, E. J. and Goetze, G. W. 1962 IRE Trans. Nucl. Sci. 8 83 Stenglass E. J. and Goetze G W. 1962 IRE Trans. Nucl. Sci. 9 97Google Scholar
[17] Jacobs, H. 1951 Phys. Rev. 84 877 10.1103/PhysRev.84.877Google Scholar
[18] Jacobs, H. et al. , 1952 Phys. Rev. 88 492 10.1103/PhysRev.88.492Google Scholar
[19] Garvin, E. L. and Edjecumbe, J 1969 Preprint SLAC-PUB 156 Google Scholar
[20] Llacer, J. and Garvin, E. L. 1969 J. Appl. Phys. 40 101 Google Scholar
[21] Garvin, E. L. and Llacer, J. 1970 J. Appl. Phys. 41 1489 Google Scholar
[22] Gavalyan, V. G. et al. , Izv.Akad. Nauk Arm. SSR, Ser. Fiz. 17 (1982) 102.Google Scholar
[23] Sternglass, E. J. 1957 Phys. Rev. 108 271 Google Scholar
[24] Eletski, A. B. 1999 Usp. Fiz. Nauk. 167 945 (in Russian)Google Scholar
[25] Eletski, A. B. 2002 Usp. Fiz. Nauk. 172 401 (in Russian)Google Scholar
[26] Hofmeister, H. 1993 Proc. NATO Advanced Study Institute on Nanophase Materials: Synthesis–Properties– Applications (Corfu, June–July) p 209 Google Scholar
[27] Gulyaev Yu, V et al. , 1994 7th Int. Vacuum Microelectronics Conf. France, July (994) p 322 (Suppl. 271)Google Scholar
[28] De Heer, W. A. et al. , 1995 Science 270 1179 Google Scholar
[29] Saito, R. et al. 1998 Physical Properties of Carbon Nanotubes (Singapore: World Scientific)Google Scholar
[30] Lorikyan, M. P. et al. , Nucl. Instrum. Methods A 570 (2007) 475 10.1016/j.nima.2006.10.187Google Scholar
[31] Gavalyan, V.G. et al. , Nucl. Instr. and Meth. A337 (1994) 613.10.1016/0168-9002(94)91135-5Google Scholar