Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T00:55:44.199Z Has data issue: false hasContentIssue false

Spontaneous spirals in vibrated granular chains

Published online by Cambridge University Press:  11 February 2011

R. E. Ecke
Affiliation:
Condensed Matter & Thermal Physics Group Center for Nonlinear Studies
Z. A. Daya
Affiliation:
Condensed Matter & Thermal Physics Group Center for Nonlinear Studies
M. K. Rivera
Affiliation:
Condensed Matter & Thermal Physics Group Center for Nonlinear Studies
E. Ben-Naim
Affiliation:
Condensed Matter & Thermal Physics Group Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

We present experimental measurements on the spontaneous formation of compact spiral structures in vertically-vibrated granular chains. Under weak vibration, when the chain is quasi two-dimensional and self-avoiding, spiral structures emerge from generic initial configurations. We compare geometrical characteristics of the spiral with that of an ideal tight spiral. Globally, the spiral undergoes a slow rotation such that to keep itself wound, while internally, fast vibrational modes are excited along the backbone with transverse oscillations dominating over longitudinal ones. Spirals have an extremely small volume in phase space, and hence, their formation demonstrates how nonequilibrium dynamics can result in a nonuniform sampling of phase space.

PACS numbers: 81.05.Rm, 83.10Nn

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Astumian, R., Science, 276, 917 (1997).Google Scholar
[2] Julicher, F., Ajdari, A., and Prost, J., Rev. Mod. Phys., 69, 1269 (1997).Google Scholar
[3] Astumian, R.D. and Bier, M., Phys. Rev. Lett., 72, 1766 (1994).Google Scholar
[4] Bartussek, R., Hanggi, P., and Kissner, J.G., Europhysics Letters, 28, 459 (1994).Google Scholar
[5] Derenyi, I., Tegzes, P., Vicsek, T., Chaos 8, 657 (1998).Google Scholar
[6] Kudrolli, A., Wolpert, M., and Gollub, J.P., Phys. Rev. Lett., 78, 1383 (1997).Google Scholar
[7] Rouyer, F. and Menon, N., Phys. Rev. Lett., 85, 3676 (2000).Google Scholar
[8] Olafsen, J.S. and Urbach, J.S., Phys. Rev. E, 60, R2468 (1999).Google Scholar
[9] Ben-Naim, E., Daya, Z.A., Vorobief, P., and Ecke, R.E., Phys. Rev. Lett., 86, 1414 (2001).Google Scholar
[10] Hastings, M.B., Daya, Z.A., Ben-Naim, E., and Ecke, R.E., Phys. Rev. E., 66, 025102(R) (2002).Google Scholar
[11] Daya, Z.A., Rivera, M.K., Ben-Naim, E., and Ecke, R.E., unpublished.Google Scholar
[12] Prentis, J.J. and Sisan, D.R., Phys. Rev. E., 65, 031306 (2002).Google Scholar
[13] de Gennes, P.G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).Google Scholar
[14] Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).Google Scholar
[15] Umbanhower, B., Melo, F., and Swinney, H.L., Nature (London) 382, 793 (1996).Google Scholar
[16] Olafsen, J.S. and Urbach, J.S., Phys. Rev. Lett., 81, 4369 (1998).Google Scholar
[17] Nie, X., Ben-Naim, E., and Chen, S.Y., Europhys. Lett., 51, 679 (2000)Google Scholar