Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T10:55:19.454Z Has data issue: false hasContentIssue false

Spontaneous Transformations in the Solid State: Towards Porous and Biphasic Materials

Published online by Cambridge University Press:  26 February 2011

Eric S. Toberer
Affiliation:
etoberer@umail.ucsb.edu, University of California, Santa Barbara, Materials Dept., 84 Chester St, Pasadena, CA 91106, Santa Barbara, CA, 93106, United States, (541) 913 2721
Ram Seshadri
Affiliation:
seshadri@mrl.ucsb.edu, University of California, Santa Barbara, Materials Dept., Santa Barbara, CA, 93106, United States
Get access

Abstract

Epitaxial thin films of Mn3O4 and ZnMn2O4 have been grown hydrothermally on (100) and (111) MgAl2O4 substrates. Film growth was characterized as a function of pH, concentration, and time and thin film X-ray diffraction revealed that the resulting films are an epitaxial continuation of the underlying spinel lattice. Reduction of these films to MnO occurred topotactically and in the case of ZnMn2O4, resulted in mesopores aligned along the <100> directions. As the films maintain an epitaxial relationship with the substrate, the mesopores are aligned macroscopically within a single crystal lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhao, Yang, P., Melosh, N., Feng, J., Chmelka, B. F., and Stucky, G. D., Adv. Mater. 10, 1380 (1998).Google Scholar
2. Lauerhaas, J. M. and Sailor, M. J., Science 261, 1567 (1993).Google Scholar
3. Suzuki, Y., Yamada, T., Sakakibara, S., and Ohji, T., Ceram. Eng. Sci. Proc. 21, 19 (2000).Google Scholar
4. Toberer, E. S., Lofvander, J. P., and Seshadri, R., Chem. Mater. 18, 1047 (2005).Google Scholar
5. Toberer, E. S., Schladt, T., and Seshadri, R., J. Am. Chem. Soc. 128, 1462 (2006).Google Scholar
6. Caslavska, V. and Roy, R., J. App. Phys. 41, 825, (1970).Google Scholar
7. Chien, A. T., Speck, J. S., Lange, F. F., Daykin, A. C., and Levi, C. G., J. Mater. Res. 10, 1784 (1995).Google Scholar
8. Chien, A. T., Sachleben, J., Kim, J. H., Speck, J. S., and Lange, F. F., J. Mater. Res. 14, 3303 (1999).Google Scholar
9. Goh, G. K. L., Levi, C. G., and Lange, F. F., J. Mater. Res. 17, 2852 (2002).Google Scholar
10. Suchanek, W., Chem. Mater. 16, 1083 (2004).Google Scholar
11. Andeen, D., Loeffler, L. L., Padture, N., and Lange, F. F., J. Crystal Growth 259, 103 (2003).Google Scholar
12. Andeen, D., Kim, J. H., Lange, F. F., Goh, G. K., and Tripathy, S., Adv. Funct. Mater. 16,799 (2006).Google Scholar
13. Berar, J. F. and Garnier, P. NIST Special Publication 846, 212 (1992).Google Scholar
14. Makovec, D., Drofenik, M., Znidarsic, A., J. Amer. Ceram. Soc. 82, 1113 (1999).Google Scholar
15. Taylor, D., Brit, Trans. J. Ceram. Soc. 84, 121 (1985).Google Scholar