Published online by Cambridge University Press: 25 February 2011
We report on the epitaxial growth of superconducting molybdenum films on sapphire substrates. These films are to be etched into arrays of isolated cylinders, each 1–5μm in diameter. When placed in a magnetic field and biased at 0.95 Tc(H), the flux movement associated with their bolometric response to the energy deposited when radiation is absorbed will provide the basis of a gamma-ray detector.
The films were prepared by UHV sputter deposition at temperatures between 650° and 840°C. Besides standard XRD analysis the films were examined by TEM. An epitaxy orientation relationship with sapphire was found similar to that observed for niobium. Electrical conductivity measurements were made as a function of temperature down to Tc, the superconducting transition temperature, which ranged from below 0.35K to above 0.8K for films with a high room temperature resistance ratio (e.g. 300 in a 0.9pjn thick film). Results from a range of films will be presented and their Tc’s discussed.