No CrossRef data available.
Article contents
Stability of Cubic Zirconia in a Granitic System Under High Pressure & Temperature
Published online by Cambridge University Press: 01 February 2011
Abstract
Cubic zirconia is a well known, highly durable material with potential uses as an actinide host phase in ceramic waste forms and inert matrix fuels and in containers for very deep borehole disposal of some highly radioactive wastes. To investigate the behaviour of this material under the conditions of possible use, a cube of ∼ 2.5 mm edge was made from a single crystal of yttriastabilized cubic zirconia doped with 0.3 wt.% CeO2. The cube was enclosed in powdered granite within a gold capsule and a small amount of H2O added before sealing. The sealed capsule was held for 4 months in a cold-seal pressure vessel at a temperature of 780°C and a pressure 150 MPa, simulating both the conditions of a deep borehole disposal involving partial melting of the host rock and the conditions under which the actinide waste form might be encapsulated in granite prior to disposal. At the end of the experiment the quenched, largely glassy, sample was cut into thin slices and studied by optical microscopy, EMPA, SEM and cathodoluminescence methods. The results show that no corrosion of the zirconia crystal or reaction with the granite melt occurred and that no detectable diffusion of elements, including Ce, in or out of the zirconia took place on the timescale of the experiment. Consequently, it appears that cubic zirconia could perform most satisfactorily as both an actinide host waste form for encapsulation in solid granite for very deep disposal and as a container material for deep borehole disposal of highly radioactive wastes (HLW), including spent fuel.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008