Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T14:10:55.602Z Has data issue: false hasContentIssue false

Stability of fast elaborated small CdS quantum dots

Published online by Cambridge University Press:  02 March 2011

M. Fregnaux
Affiliation:
Laboratoire de Physique des Milieux Denses Laboratoire de Spectrométrie de Masse et de Chimie Laser Institut Jean Barriol, Université Paul Verlaine – Metz, 1 Boulevard Arago, F-57078 Metz Cedex 03
S. Dalmasso
Affiliation:
Laboratoire de Physique des Milieux Denses
J.-J. Gaumet
Affiliation:
Laboratoire de Spectrométrie de Masse et de Chimie Laser Institut Jean Barriol, Université Paul Verlaine – Metz, 1 Boulevard Arago, F-57078 Metz Cedex 03
J.-P. Laurenti
Affiliation:
Laboratoire de Physique des Milieux Denses
Get access

Abstract

Small size CdS QDs were synthesized by (i) the single source precursor methodology and by (ii) the microwave synthetic route. The consequences of CdS QD direct exposure to air for a period of 7 days were investigated by following the evolution of the photoluminescence (PL) and absortion spectra. For QDs obtained by (i), the excitonic emission band (3.0 ‑ 3.1 eV) decreases in intensity, relatively to the low energy one (2.2 ‑ 2.5 eV) tentatively associated to midgap surface states. This suggests arising of new recombination path(s) associated to degradations during aging, possibly an oxidative formation of a CdO surface layer. On the other hand, no significant change is observed in the absorption spectra. For QDs obtained by (ii), no degradation is revealed by the PL spectra which remain unchanged. On the other hand, the absorption spectra are dominated by an unexplained broad band around 3.6 eV which tends to hide the fundamental excitonic transition one and increases in intensity with aging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cumberland, S. L., Hanif, K. M., Javier, A., Khitrov, G. A., Strouse, G. F., Woessner, S. M. and Yun, C. S., Chem. Mater., 14, 1576 (2002)Google Scholar
2. Arl, D., Dalmasso, S., Bozzolo, N., Zhang, Y., Gaumet, J.-J. and Laurenti, J.-P., Mat. Chem. Phys., 124, 129 (2010)Google Scholar
3. Fregnaux, M., Arl, D., Dalmasso, S., Gaumet, J.-J. and Laurenti, J.-P., J. Phys. Chem. C, 114, 17318 (2010)Google Scholar
4. Washington, A. L. II and Strouse, G. F., J. Am. Chem. Soc., 130, 8916 (2008)Google Scholar
5. Washington, Aaron L. and Strouse, G. F., Chem. Mater., 21, 3586 (2009)Google Scholar
6. Fregnaux, M., Dalmasso, S., Gaumet, J.-J. and Laurenti, J.-P.., presented at NANOSMAT-5: 5th International Conference on Surfaces, Coatings and Nanostructured Materiels; Journal of Nanoscience and Nanotechnology: Reims,(2010) (submitted)Google Scholar
7. Kalyuzhny, G. and Murray, R. W., J. Phys. Chem. B, 109, 7012 (2005)Google Scholar
8. Dance, I. G., Choy, A. and Scudder, M. L., J. Am. Chem. Soc., 106, 6285 (1984)Google Scholar
9. Gaumet, J. J. and Strouse, G., Mater. Sci. Eng., C, 19, 299 (2002)Google Scholar
10. Gaumet, J.-J., Khitrov, G. A. and Strouse, G. F., Nano Lett., 2, 375 (2002)Google Scholar
11. Lover, T., Henderson, W., Bowmaker, G. A., Seakins, J. M. and Cooney, R. P., Inorg. Chem., 36, 3711 (1997)Google Scholar
12. Spanhel, L., Haase, M., Weller, H. and Henglein, A., J. Am. Chem. Soc., 109, 5649 (1987)Google Scholar
13. Liu, B., Xu, G. Q., Gan, L. M., Chew, C. H., Li, W. S. and Shen, Z. X., J. Appl. Phys., 89, 1059 (2001)Google Scholar
14. Pradhan, N. and Efrima, S., J. Am. Chem. Soc., 125, 2050 (2003)Google Scholar
15. Chrysochoos, J., J. Phys. Chem., 96, 2868 (1992)Google Scholar
16. Vuylsteke, A. A. and Sihvonen, Y. T., Phys. Rev., 113, 40 LP (1959)Google Scholar
17. Cao, H., Wang, G., Zhang, S., Zhang, X. and Rabinovich, D., Inorg. Chem., 45, 5103 (2006)Google Scholar
18. Talapin, D. V., Rogach, A. L., Kornowski, A., Haase, M. and Weller, H., Nano Lett., 1, 207 (2001)Google Scholar
19. Hines, M. A. and Guyot-Sionnest, P., J. Phys. Chem., 100, 468 (1996)Google Scholar