Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:17:47.059Z Has data issue: false hasContentIssue false

The stabilization of layered Manganese Oxides for use in Rechargeable Lithium Batteries

Published online by Cambridge University Press:  10 February 2011

M. Stanley Whittingham
Affiliation:
Institute for Materials Research and Chemistry Department State University of New York at Binghamton, Binghamton, NY 13902-6016, USA
Peter Zavalij
Affiliation:
Institute for Materials Research and Chemistry Department State University of New York at Binghamton, Binghamton, NY 13902-6016, USA
Fan Zhang
Affiliation:
Institute for Materials Research and Chemistry Department State University of New York at Binghamton, Binghamton, NY 13902-6016, USA
Pramod Sharma
Affiliation:
Institute for Materials Research and Chemistry Department State University of New York at Binghamton, Binghamton, NY 13902-6016, USA
Gregory Moore
Affiliation:
Institute for Materials Research and Chemistry Department State University of New York at Binghamton, Binghamton, NY 13902-6016, USA
Get access

Abstract

The layered structure LixTiS2 and LixCoO2 are excellent reversible cathodes for lithium batteries. However, layered lithium manganese oxides are metastable relative to the spinel form on cycling in lithium batteries. They may be stabilized in the layer form by insertion of larger ions such as potassium in the interlayer region, which minimizes the diffusion of the manganese ions from the MnO2 blocks. Their low conductivity is an impediment to their use in high rate batteries. Cobalt can be doped into the layered alkali manganese dioxides, MxMn1-yCoyO2 for M = K or Na, during the hydrothermal synthesis from the alkali permanganates. A single phase is obtained up to about 5% mole cobalt. The cobalt doping is found to enhance the conductivity by two orders of magnitude relative to pure KxMnO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whittingham, M. S., U.S. Patent 4009052 and U.K. Patent 1468416, (1973).Google Scholar
2. Whittingham, M. S., Science, 192, 1126(1976).Google Scholar
3. Whittingham, M. S., J. Electrochem. Soc., 123, 315(1976).Google Scholar
4. Mitzushima, K., Jones, P. C., Wiseman, P. J., and Goodenough, J. B., Mat. Res. Bull., 17, 785(1980).Google Scholar
5. Chen, R., Zavalij, P., and Whittingham, M. S., Chem Mater, 8, 1275(1996).Google Scholar
6. Chen, R. and Whittingham, M. S., J. Electrochem. Soc., 144, L64 (1997).Google Scholar
7. Whittingham, M. S., Chen, R., Chirayil, T., and Zavalij, P., Electrochemical Society Proc., 96–5, 76 (1996).Google Scholar
8. Leroux, F., Guyomard, D., and Piffard, Y., Solid State Ionics, 80, 307(1995).Google Scholar
9. Capitaine, F., Gravereau, P., and Delmas, C., Solid State Ionics, 89, 197(1996).Google Scholar
10. Delmas, C. and Capitaine, F., Abstracts 8th Int. Meeting Lithium Batteries, 8, 470(1996).Google Scholar
11. Armstrong, A. R. and Bruce, P. G., Nature, 381, 499(1996).Google Scholar
12. Feng, Q., Kanoh, H., Ooi, K., Tani, M., and Nakacho, Y., J. Electrochem. Soc., 141, L135 (1994).Google Scholar
13. Doeff, M. M., Peng, M. Y., Ma, Y., and DeJonghe, L. C., J. Electrochem. Soc., 141, L145 (1994).Google Scholar
14. Doeff, M. M., Richardson, T. J., and Kepley, L., J. Electrochem. Soc., 143, 2507(1996).Google Scholar
15. Armstrong, A. R., Huang, H., Jennings, R. A., and Bruce, P. G., J. Mater. Chem., 8, 255(1998).Google Scholar
16. Sharma, P., Moore, G., Zhang, F., Zavalij, P. Y., and Whittingham, M. S., J. Electrochem. Soc., 146, in press (1999).Google Scholar
17. Chen, R., Chirayil, T., and Whittingham, M. S., Proceedings of the 10th International Symposium on Solid State Ionics, Singapore, December 1995. Solid State Ionics, 86–88, 1 (1996).Google Scholar
18. Chen, R., Zavalij, P. Y., and Whittingham, M. S., Mater. Res. Soc. Proc., 453, 653(1997).Google Scholar
19. Delmas, C. and Fouassier, C., Z. Anorg. Allg. Chem., 420, 184(1976).Google Scholar
20. Charenton, J.-C. and Strobel, P., Solid State Ionics, 24, 333(1987).Google Scholar
21. Guzman, R. N. D., Awaluddin, A., Shen, Y.-F., Tian, Z. R., Suib, S. L., Ching, S., and O'Young, C.-L., Chem. Mater., 7, 1286(1995).Google Scholar
22. Armstrong, A. R., Gitzendanner, R., Robertson, A. D., and Bruce, P. G., Chem. Commun., 1833 (1998).Google Scholar