Article contents
Stacked Boron Doped Poly-Crystalline Silicon-Germanium Layers: an Excellent MEMS Structural Material
Published online by Cambridge University Press: 01 February 2011
Abstract
In this work stacked boron doped poly-crystalline Silicon-Germanium (poly-SiGe) layers, which can be applied as structural MEMS layers, were studied. A standard 1 µm base layer, deposited at 480 ºC chuck temperature, is stacked until the required thickness (e.g. 10 x for a 10 µm thick layer). This 1 µm base layer consists of a PECVD seed layer (+/− 75 nm), a CVD crystallization layer (+/− 135 nm) and a PECVD layer to achieve the required thickness with a high growth-rate. The top part of this PECVD layer can optionally be used for optimizing the stress gradient by a stress compensation layer. This approach resulted in 4 µm thick poly-SiGe MEMS structural layers with low tensile stress (50 MPa), low resistivity (2 mΩcm) and a low strain gradient (< 1*10−5/µm).
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008
References
REFERENCES
- 2
- Cited by