Published online by Cambridge University Press: 21 March 2011
A manmade ferroelectric-paraelectric heterostructure, a BaTiO3 / SrTiO3 superlattice, was studied to explore the effect of strain on ferroelectricity. An atomically abrupt BaTiO3 / SrTiO3 superlattice was grown on a (001) SrTiO3 substrate by reactive molecular beam epitaxy. Both BaTiO3 and SrTiO3 layers were grown with their individual thicknesses less than the critical thickness for the formation of interfacial misfit dislocations, leaving the entire superlattice fully coherent with the substrate. This resulted in a uniformly and highly strained BaTiO3 layer to study the effect of strain on ferroelectricity. Quantitative high-resolution transmission electron microscopy was employed to examine the atomic positions of cations and anions in the strained BaTiO3 layers. It was found that the relative static displacement of cations (Ti4+, Ba2+) to anions (O2−) is larger than that of bulk BaTiO3. Our observation thus illustrates the strain-induced elevation of spontaneous polarization in BaTiO3 thin films.