Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T06:13:10.306Z Has data issue: false hasContentIssue false

Strain-Induced Elevation of the Spontaneous Polarization in BaTiO3 Thin Films

Published online by Cambridge University Press:  21 March 2011

W. Tian
Affiliation:
Department of Materials Science & Engineering, The University of Michigan, Ann Arbor, MI
J. H. Haeni
Affiliation:
Department of Materials Science & Engineering, Penn State University, University Park, PA
D. G. Schlom
Affiliation:
Department of Materials Science & Engineering, Penn State University, University Park, PA
X. Q. Pan
Affiliation:
Department of Materials Science & Engineering, The University of Michigan, Ann Arbor, MI
Get access

Abstract

A manmade ferroelectric-paraelectric heterostructure, a BaTiO3 / SrTiO3 superlattice, was studied to explore the effect of strain on ferroelectricity. An atomically abrupt BaTiO3 / SrTiO3 superlattice was grown on a (001) SrTiO3 substrate by reactive molecular beam epitaxy. Both BaTiO3 and SrTiO3 layers were grown with their individual thicknesses less than the critical thickness for the formation of interfacial misfit dislocations, leaving the entire superlattice fully coherent with the substrate. This resulted in a uniformly and highly strained BaTiO3 layer to study the effect of strain on ferroelectricity. Quantitative high-resolution transmission electron microscopy was employed to examine the atomic positions of cations and anions in the strained BaTiO3 layers. It was found that the relative static displacement of cations (Ti4+, Ba2+) to anions (O2−) is larger than that of bulk BaTiO3. Our observation thus illustrates the strain-induced elevation of spontaneous polarization in BaTiO3 thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zakharchenko, I. N., Nikitin, E. S., Mukhortov, V. M., Golovko, Y. I., Radchenko, M. G., and Dudkevich, V. P., Phys. Stat. Sol. (a) 114, 559 (1989).Google Scholar
2. Kushida, K. and Takeuchi, H., Ferroelectrics 108, 3 (1990).Google Scholar
3. Desu, S. B., Phys. Stat. Sol. (a) 141, 119 (1994).Google Scholar
4. Tabata, H., Tanaka, H., and Kawai, T., Appl. Phys. Lett. 65, 1970 (1994).Google Scholar
5. Kumazawa, T., Kumagai, Y., Miura, H., and Kitano, M., Appl. Phys. Lett. 72, 608 (1998).Google Scholar
6. Haun, M. J., Furman, E., Jang, S. J., McKinstry, H. A., and Cross, L. E., J. Appl. Phys. 62, 3331 (1987).10.1063/1.339293Google Scholar
7. Rossetti, G. A. Jr, Cross, L. E., and Kushida, K., Appl. Phys. Lett. 59, 2524 (1991).10.1063/1.105940Google Scholar
8. Desu, S. B., Chen, Z. J., Dudkevich, V. P., Dudkevich, P. V., Zakharchenko, I. N., and Kushlyan, G. L., in Epitaxial Oxide Thin Films II, edited by Speck, J. S., Fork, D. K., Wolf, R. M., and Shiosaki, T. (Mater. Res. Soc. Proc. 401, Pittsburgh, PA, 1996) pp. 195201.Google Scholar
9. Desu, S. B., Chen, Z. J., Dudkevich, V. P., Dudkevich, P. V., Zakharchenko, I. N., and Kushlyan, G. L., in Ferroelectric Thin Films V, edited by Desu, S. B., Ramesh, R., Tuttle, B. A., Jones, R. E., and Yoo, I. K. (Mater. Res. Soc. Proc. 433, Pittsburgh, PA, 1996) pp. 345350.Google Scholar
10. Pertsev, N. A., Zembilgotov, A. G., and Tagantsev, A. K., Phys. Rev. Lett. 80, 1988 (1998).10.1103/PhysRevLett.80.1988Google Scholar
11. Pertsev, N. A., Zembilgotov, A. G., Hoffmann, S., Waser, R., and Tagantsev, A. K., J. Appl. Phys. 85, 1698 (1999).Google Scholar
12. Streiffer, S. K., Basceri, C., Parker, C. B., Lash, S. E., and Kingon, A. I., J. Appl. Phys. 86, 4565 (1999).Google Scholar
13. Specht, E. D., Christen, H. M., Norton, D. P., and Boatner, L. A., Phys. Rev. Lett. 80, 4317 (1998).Google Scholar
14. Shaw, T. M., Gupta, A., Chern, M. Y., Baston, P. E., Laibowitz, R. B., and Scott, B. A., J. Mater. Res. 10, 2566 (1994).Google Scholar
15. Landolt-Bornstein: Numerical Data and Functional Relationship in Science and Technology, New Series, Group III, Vol. 3, edited by Hellwege, K. H. and Hellwege, A. M. (Springer, Berlin, 1969).Google Scholar
16. Theis, C. D. and Schlom, D. G., J. Cryst. Growth 174, 473 (1997).Google Scholar
17. Stadelmann, P. A., Ultramicroscopy 21, 131 (1987).Google Scholar
18. Tian, W., Pan, X. Q., Hanei, J. H. and Schlom, D. G., submitted to Appl. Phys. Lett.Google Scholar
19. Wang, Z. Y., Yasuda, T., Hatatani, S., and Oda, S., Jpn. J. Appl. Phys. 38, 6817 (1999).10.1143/JJAP.38.6817Google Scholar
20. Jona, F. and Shirane, G., Ferroelectric Crystals (Macmillan, New York, 1962).Google Scholar