Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T17:24:45.248Z Has data issue: false hasContentIssue false

Strategies for Crystal Engineering of Polar Solids

Published online by Cambridge University Press:  16 February 2011

Mike Zaworotko
Affiliation:
Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
S. Subramanian
Affiliation:
Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
L. R. Macgillivray
Affiliation:
Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
Get access

Abstract

Crystal engineering has been invoked to design structural analogues of two prototypal SHG active solids, p-nitroaniline (pNA) and potassium dihydrogenphosphate (KDP). pNA exists as linear polar strands because of head-to-tail hydrogen bonding between adjacent molecules whereas KDP is a self-assembled hydrogen bonded diamondoid network that becomes polar when the hydrogen bonds align. We detail preparation and crystallographic characterization of two classes of multicomponent solid, organic cation hydrogen sulfates and cocrystals of the cubane cluster [M (CO)33-OH)]4, which structurally mimic pNA and KDP, respectively. Several of the Multi-component solids are polar and they represent a generic approach to designing new polar materials since one component can be changed without altering the basic architecture within the crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmidt, G.M.J., Pure and Appl. Chem. 27, 647 (1971).CrossRefGoogle Scholar
2. Desiraju, G.R.. Crystal Engineering. The Design of Organic Solids (Elsevier, Amsterdam, 1989).Google Scholar
3. Fagan, P.J. and Ward, M.D., Scientific American 4854 (July 1992).Google Scholar
4. Aakeroy, C.B., Hitchcock, P.B., Moyle, B.D. and Seddon, K.R., J. Chem. Soc., Chem. Commun., 1856 (1989).CrossRefGoogle Scholar
5. Aakeroy, C.B., Hitchcock, P.B. and Seddon, K.R., J. Chem. Soc., Chem. Commun., 553 (1992).Google Scholar
6. Bredas, J.L., Meyers, F., Pierce, B.M. and Zyss, J., J. Am. Chem. Soc. 114, 4928 (1992), and references therein.Google Scholar
7. Endo, S., Chino, T., Tsuboi, S. and Koto, K., Nature 340, 452 (1989).Google Scholar
8. Frankenbach, G.M. and Etter, M.C., Chem. Mater. 4, 272 (1992).CrossRefGoogle Scholar
9. Another group recently reported on the ability of HSO4- to generate polar strands: Pecaut, J., Fut, Y.L. and Masse, R., Acta Cryst. B49, 535 (1993).Google Scholar
10. Marder, S.R., Perry, J.W. and Schaeffer, W.P., Science 245, 626 (1989).CrossRefGoogle Scholar
11. [1H][HSO4]: Orthorhombic, Pna21, a = 9.055(3), b = 9.832(3), C = 11.495(3)Å, V = 1023.4(5) Å3, Dc = 1.42Mgm-3, μ = 0.29mm-1, MoKα = 0.70930Å, 742 of 947 reflections had I > 3σ(I) and afforded R = 0.028 and Rw = 0.032. [3H][HSO4]: Monoclinic, P21, a = 4.5883(15), b = 10.067(4), c = 10.720(4)Å, V = 486.7(5)Å3, Dc = 1.56Mgm-3, μ = 0.31mm-1, MoKα = 0.70930Å, 638 of 848 reflections had I > 3σ(I) and afforded R = 0.060 and Rw = 0.064.+3σ(I)+and+afforded+R+=+0.028+and+Rw+=+0.032.+[3H][HSO4]:+Monoclinic,+P21,+a+=+4.5883(15),+b+=+10.067(4),+c+=+10.720(4)Å,+V+=+486.7(5)Å3,+Dc+=+1.56Mgm-3,+μ+=+0.31mm-1,+MoKα+=+0.70930Å,+638+of+848+reflections+had+I+>+3σ(I)+and+afforded+R+=+0.060+and+Rw+=+0.064.>Google Scholar
12. Ermer, O., J. Am. Chem. Soc. 110, 3747 (1988);CrossRefGoogle Scholar
Ermer, O. and Eling, A., Angew. Chem., Int. Ed. Engl. 27, 829 (1988).CrossRefGoogle Scholar
13. Simard, M., Su, D. and Wuest, J.D., J. Amer. Chem. Soc. 113, 4696 (1991).CrossRefGoogle Scholar
14. Lindsey, J. S., New J. Chem. 15, 153 (1991).Google Scholar
15. Herberhold, M., Wehrmann, F., Neugebauer, D. and Huttner, G., J. Organomet. Chem. 152, 329 (1978);CrossRefGoogle Scholar
Clerk, M.D. and Zaworotko, M.J., J. Chem. Soc., Chem. Commun., 1607 (1991).CrossRefGoogle Scholar
16. Herberhold, M. and Suss, G., Angew. Chem., Int. Ed. Engl. 14, 700 (1975).Google Scholar
17. Copp, S.B., Subramanian, S. and Zaworotko, M.J., J. Am. Chem. Soc. 114, 8719 (1992).CrossRefGoogle Scholar
18. Etter, M.C., Acc Chem. Res. 23, 120 (1990).CrossRefGoogle Scholar
19. Gabe, E.J., LePage, Y., Charland, J.-P., Lee, F.L. and White, P.S., J. Appl. Cryst. 22, 384 (1989).Google Scholar