Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T13:58:26.798Z Has data issue: false hasContentIssue false

Stress Anisotropy of Stoichiometric Nial Single Crystals

Published online by Cambridge University Press:  01 January 1992

T. Takasugi
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku,Sendai 980, Japan.
J. Kishino
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku,Sendai 980, Japan.
S. Hanada
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku,Sendai 980, Japan.
Get access

Abstract

The yield stress properties and the associated slip systems of stoichiometric NiAl single crystals were investigated in terms of crystal orientation, temperature and the deformation mode. The CRSS was, in a wide range of experimental conditions, higher in the sequence of {110}<100>, {100}<100> and {hk0}<100> slips. In all the crystal orientations studied, the CRSS in compression was higher than the CRSS in tension particularly at low temperatures. The tension-compression asymmetry on the CRSS was understood qualitatively as being due to the effect of the normal stress on the core structure of a <001> dislocation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Darolia, R., J. of Metals, 43(3), 44(1991).Google Scholar
2. Nagpal, P., Baker, I., Liu, F. and Munroe, P. R. in High Temperature Ordered Intermetallic Alloys IV. edited by Johnson, L. et al. , (MRS Symp. Proc. 213, Boston, MA, 1991) p.533.Google Scholar
3. Ball, A. and Smallman, R. E., Acta Metall., 14, 1517(1966).Google Scholar
4. Wasilewski, R. J., Butler, S. R. and Hanlon, J. E., Trans. Met. Soc. AIME, 239, 1357(1967).Google Scholar
5. Pascoe, R. T. and Newey, C. W. A., Metal Science Journal, 2, 138(1968).Google Scholar
6. Bowman, R. R., Noebe, R. D. and Darolia, R., HITEMP Review - 1989, p.47–1, (1989) NASA CP-10039.Google Scholar
7. Field, R. D., Lahrman, D. F. and Darolia, R., Acta Metall. Mater., 39, 2951(1991).Google Scholar
8. Lahrman, D. F., Field, R. D. and Darolia, R. in High Temperature Ordered Intermetallic Alloys IV. edited by Johnson, L. et al. , (MRS Symp. Proc. 213, Boston, MA, 1991) p. 603.Google Scholar
9. Noebe, R. D., Misra, A. and Gibala, R., ISIJ -International, 31, 1172(1991).Google Scholar
10. Pascoe, R. T. and Newey, C. W. A., Phys. Stat. Solidi, 29, 357(1968).Google Scholar
11. Field, R. D., Lahrman, D. F. and Darolia, R. in High Temperature Ordered Intermetallic Alloys IV. edited by Johnson, L. et al. , (MRS Symp. Proc. 213, Boston, MA, 1991) p. 255.Google Scholar
12. Ball, A. and Smallman, R. E., Acta Metall., 14, 1517(1966).Google Scholar
13. Ball, A. and Smallman, R. E., Acta Metall., 14, 1349(1966).Google Scholar
14. Wasilewski, R. J., Buder, S. R. and Hanlon, J. E., Trans. Met. Soc. AIME, 239, 1357 (1967).Google Scholar
15. Pascoe, R. T. and Newey, C. W. A., Metal Science Journal, 2, 138(1968).Google Scholar
16. Pascoe, R. T. and Newey, C. W. A., Phys. Stat. Solidi, 29, 357(1968).Google Scholar
17. Loretto, M. H. and Wasilewski, R. J., Phil. Mag., 23, 1311(1971).Google Scholar
18. Nagpal, P. and Baker, I., Metall. Trans. A, 21A, 2281(1990).Google Scholar
19. Bowman, R. R., Noebe, R. D., Raj, S. V. and Locci, I. E., Metall. Trans. A, in press.Google Scholar
20. Loretto, M. H. and Wasilewski, R. J., Phil. Mag., 23, 1311(1971).Google Scholar