Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T09:20:30.915Z Has data issue: false hasContentIssue false

Stress Effects on As Activation in Si

Published online by Cambridge University Press:  01 February 2011

Chihak Ahn
Affiliation:
chahn@u.washington.edu, University of Washington, Physics, Department of Physics, University of Washington, Seattle, WA, 98195, United States, 206-616-4450
Scott T Dunham
Affiliation:
dunham@ee.washington.edu, University of Washington, Dept. of Electrical Engineering, Seattle, WA, 98195, United States
Get access

Abstract

We studied stress effects on As activation in silicon using density functional theory. Based on lattice expansion coefficient, we calculated formation energy change due to applied stress and plotted the stress dependence of AsmV concentration. We found that biaxial stress results in minimal impact on As activation, which is consistent with experimental observation by Sugii et al. [J. Appl. Phys. 96, 261 (2004)], who found no significant change in As activation under tensile stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thompson, S. E. et al., IEEE Trans. Electron Devices, 51, 1790 (2004).Google Scholar
2. Ahn, C., Song, J., and Dunham, S.T., Mater. Res. Soc. Symp. Proc. 913, 0913–D05 (2006).Google Scholar
3. Ahn, C. and Dunham, S.T., Vac, J.. Sci. Technol. B, 24, 700 (2006).Google Scholar
4. Yang, L., Watling, J.R., Wilkins, R.C. W., Borici, M., Barker, J.R., Asenov, A., and Roy, S., Semicond. Sci. Technol. 19, 1174 (2004).Google Scholar
5. Berding, M.A., Sher, A., van, M. Schilfgaarde, Rousseau, P.M., and Spicer, W.E., Appl. Phys. Lett. 72, 1492 (1998).Google Scholar
6. III, G.S. Cargill, Angilello, J., and Kavanagh, K.L., Phys. Rev. Lett. 61, 1748 (1988).Google Scholar
7. Diebel, M., Ph. D thesis, University of Washington, Seattle (2004).Google Scholar
8. Kresse, G. and Hafner, J., Phys. Rev. B 47, RC558 (1993); G. Kresse and Furthmüller, J. 54, 11169 (1996).Google Scholar
9. Perdew, J.P., in Electronic Structure of Solids, edited by Ziesche, P. and Eschrig, H. (Akademie Verlag, Berlin, 1991).Google Scholar
10. Baldereschi, A., Phys. Rev. B 7, 5212 (1973); D. J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747 (1973); H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).Google Scholar
11. Parisini, A., Bourret, A., Armigliato, A., Servidori, M., Solmi, S., Fabbri, R., Regnard, J.R., and Allain, J.L., J. Appl. Phys. 87, 2320 (1990).Google Scholar
12. Herrera-Gomez, A., Rousseau, P.M., Woicik, J.C., Kendelewicz, T., Plummer, J., and Spicer, W. E., J. Appl. Phys. 85, 1429 (1999).Google Scholar
13. Koteski, V., Ivanovic, N., Haas, H., Holub-Krappe, E., and Mahnke, H.-E., Nucl. Instr. and Meth. in Phys. Res. B 200, 60 (2003).Google Scholar
14. Wei, S., Oyanagi, H., Kawanami, H., Sakamoto, K., Sakamoto, T., Tamura, K., Saini, N. L., and Uosaki, K., J. Appl. Phys. 82, 4810 (1997).Google Scholar
15. Erbil, A., Weber, W., Cargill, G.S. III, and Boehme, R.F., Phys. Rev. B 34, R1392 (1986).Google Scholar
16. Batista, E.R., Richard, J.H., Hennig, G., Uberuaga, B.P., Martin, R.L., Scuseria, G.E., Umrigar, C. J., and Wilkins, J.W., Phys. Rev. B 74, 121102 (2006).Google Scholar
17. Ural, A., Griffin, P.B., and Plummer, J.D., Phys. Rev. Lett. 83, 3454 (1999).Google Scholar
18. Ranki, V., Nissilé, J., and Saarinen, K., Phys. Rev. Lett. 88, 105506 (2002).Google Scholar
19. Derdour, M., Nobili, D., and Solmi, S., J. Electrochem, Soc. 138, 857 (1991).Google Scholar
20. Sugii, N., Irieda, S., Morioka, J., and Inada, T., J. Appl. Phys. 96, 261 (2004).Google Scholar