Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T14:25:35.575Z Has data issue: false hasContentIssue false

Stress-Driven Formation of Self-Assembled InGaAs Islands on Sub-Micron Metal-Patterned Substrate

Published online by Cambridge University Press:  10 February 2011

Maeng Ho Son
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O.Box 13 1 Cheongryang, Seoul 130-650, Korea Department of Physics, Kyonggi University, Yiui-Dong, San 94-6, Paldal-gu, Suwon 442-760, Korea
S. K. Jung
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O.Box 13 1 Cheongryang, Seoul 130-650, Korea
Byung Don Min
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O.Box 13 1 Cheongryang, Seoul 130-650, Korea
Chan Kyung Hyun
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O.Box 13 1 Cheongryang, Seoul 130-650, Korea
Bum Ho Choi
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O.Box 13 1 Cheongryang, Seoul 130-650, Korea
Eun Kyu Kim
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O.Box 13 1 Cheongryang, Seoul 130-650, Korea, ekkim@kistmail.kist.re.kr
Yong Kim
Affiliation:
Department of Physics, College of Natural Sciences, DongA University, Hadan-2-dong 840, Saha-gu, Pusan 604-714, Korea
Jong Soo Lim
Affiliation:
Department of Physics, Kyonggi University, Yiui-Dong, San 94-6, Paldal-gu, Suwon 442-760, Korea
Get access

Abstract

A stress-driven formation of self-assembled InGaAs islands has been studied by the growth on GaAs (100) substrates with sub-micron platinum stripe pattern. Islands or quantum dots preferentially nucleate at the boundary of metal patterns. In addition, a quantum dot-free region near the boundary of the metal pattern is found. Those results are attributed to the stress between metal stripe and GaAs surface, which produces a laterally stressed region around the metal stripe. Adatoms on this region preferentially migrate toward the edge of metal stripes with maximum stress. This result may show a possible way for the interconnection between randomly distributed self-assembled quantum dots and metal stripes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For recent reviews, U Meirav and Foxman, E. B., Semicond. Sci. Technol. 10, 255 (1995), L. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, and N. S. Wingreen, available from http://vortex.tn.tudelft.nl (1997).Google Scholar
2. Seifert, W., Carlsson, N., Johansson, J., Pistol, M-E., and Samuelson, L., J. Cryst. Growth 170,Google Scholar
3. Leon, R., Lobo, C., Clark, A., Bozek, R., Wysmolek, A., Kurpiewski, A., and Kaminska, M., J. Appl. Phys. 84, 248 (1998).10.1063/1.368076Google Scholar
4. Eaglesham, D. J. and Cerrulo, M., Phys. Rev. Lett. 64, 1943 (1990).10.1103/PhysRevLett.64.1943Google Scholar
5. Carlsson, N., Georgsson, K., Montelius, L., Samuelson, L., Seifert, W., and Wellenberg, R., J. Cryst. Growth 156, 23 (1995).10.1016/0022-0248(95)00235-9Google Scholar
6. Marzin, J. Y., Gerald, J.-M., Izrael, A., Barrier, D., and Bastard, G., Phys. Rev. Lett. 73, 716 (1994).10.1103/PhysRevLett.73.716Google Scholar
7. Grundmann, M., Christen, J., Ledentsov, N. N., Bohrer, J., Bimberg, D., Ruvimov, S. S., Werner, P., Richter, U., Gosele, U., Heydenreich, J., Ustinov, V. M., Egorov, A. Yu., Zhukov, A. E., Kope'v, P. S., and Alferov, Zh. I., Phys. Rev. Lett. 74, 4043 (1995).10.1103/PhysRevLett.74.4043Google Scholar
8. Leon, R., Petroff, P. M., Leonard, D., and Fafard, S., Science 267, 1966 (1995).10.1126/science.267.5206.1966Google Scholar
9. Drexler, H., Leonard, D., Hansen, W., Kotthaus, J. P., and Petroff, P. M., Phys. Rev. Lett. 73, 2252 (1994).10.1103/PhysRevLett.73.2252Google Scholar
10. Medeiros-Ribeiro, G., Fikus, F. G., Petroff, P. M., and Efros, A. L., Phys. Rev. B 55, 1568 (1997).10.1103/PhysRevB.55.1568Google Scholar
11. Miller, B. T., Hansen, W., Manus, S., Luyken, R. J., Lorke, A., Kotthaus, J. P., Huant, S., Medeiros-Ribeiro, G., and Petroff, P. M., Phys. Rev. B 56, 6774 (1997).Google Scholar
12. Jung, S. K., Choi, B. H., Kim, S. I., Hyun, C. K., Min, B. D., Hwang, S. W., Park, J. H., Kim, Y., Kim, E. K., and Min, S. K., Jpn. J. Appl. Phys. 37, 7169 (1998).10.1143/JJAP.37.7169Google Scholar
13. Grandjean, N., Massies, J., and Tottereau, O., Phys. Rev. B55, R10189 (1997).10.1103/PhysRevB.55.R10189Google Scholar
14. Min, B. D., Kim, Y., Kim, E. K., Min, S. K., Park, M. J., Phys. Rev. B57, 11879 (1998).10.1103/PhysRevB.57.11879Google Scholar
15. Leon, R., Senden, T.J., Kim, Y., Jagadish, C., and Clark, A., Phys. Rev. Lett. 78, 4942 (1997).10.1103/PhysRevLett.78.4942Google Scholar
16. Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N. P., Phys. Rev. Lett. 75, 2542 (1995).10.1103/PhysRevLett.75.2542Google Scholar
17. Tersoff, J., Teichert, C., and Legally, M. G., Phys. Rev. Lett. 76, 1675 (1996).10.1103/PhysRevLett.76.1675Google Scholar
18. Seifert, W., Carlsson, N., Petersson, A., Wernersson, L.-E., Samuelson, L., Appl. Phy. Lett. 68, 1684 (1996).10.1063/1.115905Google Scholar
19. Lent, C. S., Tougaw, P. D., Porod, W., Bernstein, G. H., Nanotechnology 4, 49 (1993).10.1088/0957-4484/4/1/004Google Scholar