Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T07:16:02.979Z Has data issue: false hasContentIssue false

Stressed In Situ X-Ray Diffraction Studies of a Ni-Ti Shape Memory Alloy

Published online by Cambridge University Press:  15 February 2011

J. Y. Hwang
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, Republic of China.
C. F. Yang
Affiliation:
Materials Engineering Department, Tatung Institute of Technology, Taipei, Taiwan, Republic of China.
Get access

Abstract

The B2 ⌊ R ⌊ B19′ phase transformations in a Ni-50.7 at.% Ti alloy were investigated under a series of uniaxial tensile stresses. A custom-build X-ray sample holder with hot, cold and stressing stages was used for structure analysis at temperatures up to 140 °C under a variety of tensile stresses (up to 250 MPa). Reorientation and growth of favorably oriented variant domains of R phase and martensite under stress were observed. In the stress-assisted phase transformations, the favorable (020)M and (300)R planes are expected to align preferably parallel to (011)B2 planes, and the unfavorable (111)M and (112)R planes perpendicular to the (011)B2 planes. In addition, the results of semi-quantitative analyses of the relative amounts of parent phase and martensite formed under a specific stress and temperature condition, x=x(σ,T), are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chang, L. C. and Read, T. A., Trans. AIME, 189, 47 (1951).Google Scholar
2. Burkart, M. W. and Read, T. A., Trans AIME, 197, 1516 (1953).Google Scholar
3. Basinski, Z. S. and Christian, J. W., Acta Metall., 2, 101 (1954).Google Scholar
4. Buehler, W. J., Gilfrich, J. V. and Weiley, K. C., J. Appl. Phys., 34, 1467 (1963).Google Scholar
5. Goo, E. and Sinclair, R., Acta Metall., 33, 1717 (1985).CrossRefGoogle Scholar
6. Miyazaki, S., Imai, T., Otsuka, K. and Suzuki, Y., Scripta Metall., 15, 853 (1981).Google Scholar
7. Miyazaki, S., Ohmi, Y., Otsuka, K. and Suzuki, Y., ICOMAT-82, Supplement to J. de Phys., 43, C4 (1982).Google Scholar
8. Saburi, T., Yoshida, M. and Nenno, S., Scripta Metall., 18, 363 (1984).Google Scholar
9. Miyazaki, S., Imai, T., Igo, Y. and Otsuka, K., Metall. Trans., 17A, 115 (1986).Google Scholar
10. Otsuka, K. and Shimizu, K., Int'l Metals Reviews, 31, No.3, 93 (1986).Google Scholar
11. Miyazaki, S. and Otsuka, K., ISIJ International, 29, 353 (1989).Google Scholar
12. Miyazaki, S. and Wayman, C. M., Acta Metall., 36, 181 (1988).Google Scholar
13. Miyazaki, S., Otsuka, K. and Wayman, C. M., Proc. MRS Int. Meeting on Advanced Materials, Mater. Res. Soc., Pittsburgh (1989).Google Scholar
14. Jee, K. K., Shin, M. C. and Kim, Y. G., Scripta Metall., 24, 921 (1990).Google Scholar
15. Wu, S. K., Lin, H. C. and Chou, T. S., Acta Metall. Mater., 38, 95 (1990).Google Scholar