Published online by Cambridge University Press: 16 February 2011
Amorphous Gd-Fe alloy thin films were made by D.C. planar magnetron sputtering under various deposition conditions (e.g., film thickness, composition, working pressure of Ar, negative bias voltage and deposition rate). The stress, the film composition and the content of entrapped Ar in the films were measured respectively. The experimental results showed that in this case the working pressure of Ar and the negative bias voltage did not change the composition of the films, and the stresses were all compressive except for the films deposited in a very high working pressure of Ar. The origin of the compressive stress can be attributed to the atomic peening effect produced by fast neutral working gas atoms rebounded from the sputtering target. The magnitude of the compressive stress depends not only on the amount of Ar atoms incorporated in the films but also on the film microstructure such as the packing density.