Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:10:29.407Z Has data issue: false hasContentIssue false

Structural and Electrical Properties of Molecular Beam Deposited Polycrystalline Silicon

Published online by Cambridge University Press:  22 February 2011

Sylvain L. Delage
Affiliation:
IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
S.-J. Jeng
Affiliation:
IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
D. Jousse
Affiliation:
IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
S. S. Iyer
Affiliation:
IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

The structural and electrical properties have been investigated of antimony doped polycrystalline silicon films obtained by molecular beam deposition on oxidized silicon substrates. We show that low resistivity films with smooth morphology are obtained by Solid Phase Crystallization of antimony doped amorphous silicon layers deposited at 250°C. A resistivity of 4.3 mΩ cm is obtained by crystallizing the films at temperatures as low as 650°C for 15 minutes. Similar resistivities are typically obtained by Chemical Vapor Deposition at temperature of at least 850 °C. In-situ crystallization of the amorphous silicon is needed to obtain low resistivity polysilicon. We also show that direct deposition above 650 ° C gives rise to polycrystalline silicon with much higher resistivities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Buechler, J., Kasper, E., Russer, P., and Strohm, K.M., IEEE Trans. Elect. Devices, ED 33 2047(1987).Google Scholar
2. Rosencher, E., Badoz, P.A., Pfister, J.C., d';Avitaya, F. Arnaud, Vincent, G., and Delage, S., Appl. Phys. Lett., 49, 271(1986).Google Scholar
3. Iyer, S.S., Patton, G.L., Delage, S.L., Tiwari, S.. and Stork, J.M.C., ”Silicon-germanium base heterojunction bipolar transistors by molecular beam epitaxy”, to be published in 2 nd Int. Si MBE Conf. proceedings, Electrochem. Soc., Hawaii, Oct. 1987.Google Scholar
4. Herzog, H.J. and Kasper, E., J. Electrochem. Soc., 132, 2227(1985).CrossRefGoogle Scholar
5. Matsui, M., Shiraki, Y., and Maruyama, E., J. Appl. Phys., 53, 995(1982).CrossRefGoogle Scholar
6. Ota, Y., Thin Sol. Films, 106, 3(1983).Google Scholar
7. Delage, S.L., Iyer, S.S., and Scilla, G.J., ”Unintentional impurities in silicon layers grown by molecular beam epitaxy”, to be published in 2 nd Int. Si MBE Conf. proceedings, Electrochem. Soc., Hawaii, Oct. 1987.Google Scholar
8. Jousse, D., Delage, S.L., Iyer, S.S., and Crowder, M., ”Hydrogen passivation of grain boundaries in polycrystalline silicon deposited by molecular beam”, this conference.Google Scholar
9. Thompson, R.D., Iyer, S.S., and Delage, S.L., ”Automation of a 125 mm Si MBE processing system – concepts and implementation”, to be published in 2 nd d Int. Si MBE Conf. proceedings, Electrochem. Soc., Hawaii, Oct. 1987.Google Scholar
10. Bean, J.C., and Poate, J.M., Appl. Phys. Lett., 36, 59(1980).Google Scholar
11. Knights, J.C., Lujan, R.A., Appl. Phys. Lett., 35, 244(1979).Google Scholar
12. Fripp, A.L., J. Appl. Phys., 46, 1240(1975).Google Scholar
13. Seto, J.Y., J. Appl. Phys., 46, 5247(1975).Google Scholar
14. Lu, N.C.C., Gerzberg, L., and Meindl, J.D., IEEE Elect. Device Lett., 1,38(1980).CrossRefGoogle Scholar
15. Kamins, T.I., J. Appl. Phys., 42, 4357(1971).Google Scholar
16. Pandya, R., and Khan, B.A., J. Appl. Phys., 62, 3244(1987).Google Scholar
17. Freeman, E.C. and Paul, W., Phys. Rev., B 18,4288(1978).Google Scholar
18. Scilla, G.J., Private Communication.Google Scholar
19. Metzger, R.A., and Allen, F.G., J. Appl. Phys., 55, 931(1984).Google Scholar
20. Streit, D.C., Ahlers, E.D., and Allen, F.G., J. Vac. Sci. Technol., B 5, 752(1987).Google Scholar