Published online by Cambridge University Press: 25 January 2013
Much attention has been given to bulk metallic glasses (BMG) in recent years, particularly those based on binary alloys due to the simplicity of their atomic composition. Although efforts to understand the atomistic features that give rise to their exceptional properties have been made, the electronic and vibrational properties have been disregarded. We undertook the task of simulating the Cu64Zr36 glassy metal using a supercell with 108 atoms and a different simulational approach: the undermelt-quench approach [1]. The structure was characterized by means of the radial (pair) distribution function and the bond-angle distribution and the electronic density of states was calculated. We find that our results agree well with experimental data.