Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T08:27:31.231Z Has data issue: false hasContentIssue false

Structural and Optical Properties of Co-doped HfO2 Multi-layer Deposited by Spray Pyrolysis Technique

Published online by Cambridge University Press:  15 April 2016

R. M. Radamés
Affiliation:
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA)-IPN, Unidad Legaria; Calzada Legaria No. 694, Irrigación, Delegación Miguel Hidalgo, C.P. 11500, México, D.F.
J. Guzmán Mendoza
Affiliation:
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA)-IPN, Unidad Legaria; Calzada Legaria No. 694, Irrigación, Delegación Miguel Hidalgo, C.P. 11500, México, D.F.
L. Lartundo-Rojas
Affiliation:
Centro de Nanociencias, Micro y Nanotecnologías-IPN; Calle Luis Enrique Erro s/n, Col. Zacatenco, 07738, México, D.F.
J. A. Díaz Góngora
Affiliation:
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA)-IPN, Unidad Legaria; Calzada Legaria No. 694, Irrigación, Delegación Miguel Hidalgo, C.P. 11500, México, D.F.
Get access

Abstract

The optical and structural properties of co-doped HfO2 thin films with rare earth trivalent ions prepared by ultrasonic spray pyrolysis technique, are reported. An arrangement of multi-layer (Si-SiO2-HfO2:Eu3+-HfO2:Tb3+-HfO2:Tm3+-SiO2) were deposited on silicon substrates at temperatures from 400 to 550°C, using acetyl acetonates as precursory reagents. A refractive index value of 2.1 was determined by spectral ellipsometry. The surface morphology was obtained by AFM measurements. For 50 to 550 nm thickness films, an average roughness value of ∼56.8 Å was obtained for different substrate temperatures and grown deposition times. EDS measurements showed the presence of hafnium, and rare earths dopants as elemental composition. XPS measurements demonstrated that hafnium and rare earths oxidation species are formed at hafnium dioxide thin films. Photoluminescence emission spectra of multi-layer structures present characteristic emission peaks associated with Tb+3, Eu3+, and Tm3+ dopants. The results presented above motivate us to consider that these multilayer structures could be appropriate to be used as a rare earth host to improve optical emission.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Kuhaili, M.F., Optical properties of hafnium oxide thin films and their application in energy efficient windows, J. Opt. Mater. 27 (2004) 383387.10.1016/j.optmat.2004.04.014CrossRefGoogle Scholar
Mendoza, J. G., Frutis, M. A. A., Flores, G. A., Hipólito, M. G., Cerda, A. M., Nieto, J. A., Montalvo, T. R. and Falcony, C., Synthesis and characterization of hafnium oxide films for thermo and photoluminiscence applications, Appl. Radiat. and Isotopes. 68 No. 4-5, (2010) 696699.10.1016/j.apradiso.2009.09.031CrossRefGoogle Scholar
Torchio, Philippe, Gatto, Alexandre, Alvisi, Marco, Albrand, Gérard, Kaiser, Norbert, and Amra, Claude, High reflectivity HfO2/SiO2 ultraviolet mirrors, Appl. Optics. 41, issue 16 (2002) 32563261.10.1364/AO.41.003256CrossRefGoogle Scholar
Saitoh, M., Haratal, H., and Hiramoto, T., Room-temperature demonstration of integrated silicon single-electron transistor circuits for current switching and analog pattern matching, IEDM Tech. Dig. (2004) 187190.Google Scholar
Kawanago, T., Tachi, K., Song, J., Kakushima, K., Ahmet, P., Tsutsui, K., Sugii, N., Hattori, T., Iwai, H., Electrical characterization of directly deposited La-Sc oxides complex for gate insulator application, STARC Symposium September (2007), Osaka, Japan.10.1016/j.mee.2007.04.115CrossRefGoogle Scholar
Ando, T., Frank, M. M., Choi, K., Choi, C., Bruley, J., Hopstaken, M., Copel, M., Cartier, E., Kerber, A., Callegari, A., Lacey, D., Brown, S., Yang, Q., and Narayanan, V., Understanding mobility mechanisms in extremely scaled HfO2 (EOT 0.42 nm) using remote interfacial layer scavenging technique and Vt-tuning dipoles with gate-first process, IEDM Tech. Dig. (2009) 423426.Google Scholar
Bersuker, G., Yum, J., Iglesias, V., Porti, M., Nafría, M., McKenna, K., Shluger, A., Kirsch, P. and Jammy, R., Grain boundary-driven leakage path formation in HfO2 dielectrics, Proc. 40th European Solid-State Device Research Conference, Sevilla (2010) 333336.Google Scholar
Harris, H., Choi, K., Mehta, N., Chandolu, A., Biswas, N., Kipshidze, G., Nikishin, S., Gangopadhyay, S., and Temkin, H., HfO2 gate dielectric with 0.5 nm equivalent oxide thickness, Appl. Phys. Lett. 81 (2002) 10651067.10.1063/1.1495882CrossRefGoogle Scholar
Wang, L., Fan, B., Wang, Z., , X. Wu, Cheng Y., Efects of substrate temperature on crystallite orientation of HfO2 thin films, Mater. Sci+. -Poland 27 No. 2 (2009).Google Scholar
Ni, Jie, Li, Zheng-cao, and Zhang, Zheng-jun, Influence of deposition temperature on the structure and optical properties of HfO2 thin films, Front. of Mater. Sci+. China 2 No. 4 (2008) 381385.Google Scholar
Narayanan, V., Maitra, K., Linder, B. P., Paruchuri, V. K., Gusev, E. P., Jamison, P., Frank, M. M., Steen, M. L., La Tulipe, D., Arnold, J., Carruthers, R., Lacey, D. L., and Cartier, E., Process optimization for high electron mobility in n-MOSFET’s with aggressively scaled HfO2/metal stacks, IEEE Electr. Device L. 27 No. 7 (2006) 591594.10.1109/LED.2006.876312CrossRefGoogle Scholar
Fadel, M., Azim, O.A. , M., Omer, O.A., Basily, R.R., A study of some optical properties of hafnium dioxide (HfO2) thin films and their applications, Appl. Phys. A Mater. Scie+. & Proc. 66 issue 3 (1993) 335343.10.1007/s003390050675CrossRefGoogle Scholar
Lange, S., Kiisk, V., Reedo, V., Kirm, M., Aarik, J. and Sildos, I., Luminescence of RE-Ions in HfO2 thin films and some possible applications, Opt. Mater. 28 No. 11 (2006) 12381242.10.1016/j.optmat.2006.02.011CrossRefGoogle Scholar
Choia, K.) and Temkin, H. Harris, H. and Xie, S L. and , M., Initial growth of interfacial oxide during deposition of HfO2 on silicon, Appl. Phys. Lett. 85 issue 2 (2004) 215.10.1063/1.1771457CrossRefGoogle Scholar
Jur, J. S., Lichtenwalner, D. J., and Kingon, A. I., High temperature stability of lanthanum silicate dielectric on Si (001), Appl. Phys. Lett. 90 (2007) 102908.10.1063/1.2712805CrossRefGoogle Scholar
Cartier, E., Hopstaken, M., and Copel, M., Oxygen passivation of vacancy defects in metal-nitride gated HfO2 /SiO2 /Si devices, Appl. Phys. Lett. 95 (2009) 042901.10.1063/1.3186075CrossRefGoogle Scholar
Gilo, M, Croitoru, N., Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source, Thin Solid Films. (1999) 350:2.10.1016/S0040-6090(99)00226-6CrossRefGoogle Scholar
Selvakumar, N., Barshilia, H. C., Rajam, K. S., and Biswas, A., Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers, Sol. Energ. Mater. Sol. Cells 94(8) (2010) 14121420.10.1016/j.solmat.2010.04.073CrossRefGoogle Scholar
Liu, Wenting, Liu, Zhengtang, Spectroscopic ellipsometry study on HfO2 thin films deposited at different RF powers, Adv. Mater. Res. 287-290 (2011) 21652168.10.4028/www.scientific.net/AMR.287-290.2165CrossRefGoogle Scholar
Wang, Z. J., Kumagai, T., Kokawa, H., Ichiki, M. and Maeda, R., Preparation of hafnium oxide thin films by sol-gel method, J. of Electroceram. 21 No. 1-4 (2008) 499502.10.1007/s10832-007-9228-xCrossRefGoogle Scholar
Tang, W. T., Ying, Z. F., Hu, Z. G., Li, W. W., Sun, J., Xu, N., and Wu, J. D., Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature, Thin Solid Films 518 (19) (2010) 54425446.10.1016/j.tsf.2010.04.012CrossRefGoogle Scholar
Guzmán-Mendoza, J., Albarrán-Arreguín, D., Alvarez Fragoso, O., Alvarez-Perez, M.A., Falcony, C., García Hipólito, M, Photoluminescent characteristics of hafnium oxide layers activated with trivalent terbium (HfO2:Tb+3), Radiat. Eff. Defect. S. 162 Nos. 10-11, (2007) 723729.10.1080/10420150701482519CrossRefGoogle Scholar
Elizabeth, N C, Geonel, R G, J G-M, M G-H, C Falcony, Photoluminescence response of HfO2:Eu3+ obtained by hydrothermal route, Op. J. Synth. Theo. Appl. 2 (2013) 7377.Google Scholar
Dieke, G. H., Spectra and Energy Levels of Rare Earth Ions in Crystals, second ed., Interscience Publishers, New York 1968.Google Scholar
Liu, G., Jaquier, B., Spectroscopic properties of rare earths on optical materials, in: Liu, G., Jacquier, B. (Eds.) Springer Series Materials Science 83 New York, 2005, pp 130186.Google Scholar
Chourasia, A. R., Hickman, J. L., Miller, R. L., Nixon, G. A., and Seabolt, M. A., X-Ray Photoemission Study of the Oxidation of Hafnium, Int. J. Spectrosc. 2009 (2009) 6 p.10.1155/2009/439065CrossRefGoogle Scholar
Zaleta-Alejandre, E., Meza-Rocha, A. N., Rivera-Alvarez, Z., Sandoval, I. M., Araiza, J. J., Aguilar-Frutis, M., and Falcony, C., Optical characteristics of silica coatings deposited by ozone assisted spray pyrolysis technique. ECS J. Solid State Sci. Tech. 2 (7) (2013) 145148.10.1149/2.009307jssCrossRefGoogle Scholar
Nath, K. G., Ufuktepe, Y., Kimura, S., Kinoshita, T., Kumigashira, H., Takahashi, T., Matsumura, T., Suzuki, T., Ogasawara, H., Kotani, A., 4d Core-level resonant photoemission spectroscopy of thulium monochalcogenides around the Tm 3d threshold, J. Electron Spectrosc. 88-91 (1998) 369375.10.1016/S0368-2048(97)00183-7CrossRefGoogle Scholar
Preisler, E. J., Guha, S., Copel, M., Bojarczuk, N. A., Reuter, M. C., and Gusev, E., Interfacial oxide formation from intrinsic oxygen in W–HfO2 gated silicon field-effect transistors, Appl. Phys. Lett., 85 No. 25 (2004) 62306232.10.1063/1.1834995CrossRefGoogle Scholar