Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T01:07:48.051Z Has data issue: false hasContentIssue false

Structural Changes in Fast Ion Conducting Chloride Doped Potassium Borate Glasses

Published online by Cambridge University Press:  21 February 2011

F.A. Fusco
Affiliation:
Massachusetts Institute of Technology, Crystal Physics & Optical Electronics Laboratory, Department of Materials Science and Engineering, Cambridge, MA
M. Massot
Affiliation:
Universite Pierre et Marie Curie, Laboratoire de Physique des Solides, Paris, France
M. Oueslati
Affiliation:
Universite Pierre et Marie Curie, Laboratoire de Physique des Solides, Paris, France
E. Haro
Affiliation:
Universite Pierre et Marie Curie, Laboratoire de Physique des Solides, Paris, France
H.L. Tuller
Affiliation:
Massachusetts Institute of Technology, Crystal Physics & Optical Electronics Laboratory, Department of Materials Science and Engineering, Cambridge, MA
M. Balkanski
Affiliation:
Universite Pierre et Marie Curie, Laboratoire de Physique des Solides, Paris, France
Get access

Abstract

The effects of halide substitution on ionic conductivity in potassium borate glasses are different from those observed in their Li and Na analogs. Physical property and Raman spectroscopy results suggest that this behavior is associated with differences in the glass network structure induced by the presence of different interstitial alkali cations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chemical analyses were performed by Owens-Illinois Analytical Services, Toledo, Ohio.Google Scholar
2. ASTM “Standard Test Method for Density of Glass by Buoyancy” Test C693 Volume 15:02.Google Scholar
3. Konijnendijk, W.L. and Stevels, J.M., J.Non-Cryst. Solids 18 307 (1975).Google Scholar
4. Bril, T.W., Philips Res. Rep. Suppl. 2 1 (1976).Google Scholar
5. White, W.B., Brawer, S.A., Furukawa, T. and McCarthy, G.J. Structure of Borate Glasses By Raman Spectroscopy in Borate Glasses: Structure, Properties, Applications, eds. Pye, L.D., Frechette, W.D. and Kreidl, N.J., Plenum Press, NY 1978.Google Scholar
6. Galeener, F.L., Geissberger, A.E., J. de Physique C9 343 (1982).Google Scholar
7. Button, D.P., Moon, P.K., Tuller, H.L. and Uhlmann, D.R., Glastechn. Ber. 56K Bd. 2 856 (1983).Google Scholar
8. Button, D.P., Ph.D. Thesis, MIT 1983.Google Scholar
9. Anderson, O.L. and Stuart, D.A., J.Amer. Ceram. Soc. 37 573 (1954).Google Scholar
10. McElfresh, D.K. and Howitt, D.G., J.Amer. Ceram. Soc. 69 C237 (1986).Google Scholar
11. Krogh-Moe, J., Ark.Kemi. 12 475 (1958).Google Scholar
12. Krogh-Moe, J., Acta Cryst. 15 190 (1962).Google Scholar
13. Krogh-Moe, J., Acta Cryst. B24 179 (1968).Google Scholar
14. Krogh-Moe, J., Acta Cryst. B30 578 (1974).Google Scholar
15. Krogh-Moe, J., Acta Cryst. B28 3089 (1972).CrossRefGoogle Scholar