Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T13:48:27.006Z Has data issue: false hasContentIssue false

Structural Evolution of Nanocrystalline Germanium Thin Films with Film Thickness and Substrate Temperature

Published online by Cambridge University Press:  01 February 2011

William B. Jordan
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Eric D. Carlson
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Todd R. Johnson
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Sigurd Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Get access

Abstract

The structure of germanium thin films prepared on glass by plasma enhanced chemical vapor deposition was characterized by Raman spectroscopy, atomic force microscopy (AFM) and field emission scanning electron microscopy (SEM). Crystallinity, surface roughness, and grain size were measured as functions of film thickness and deposition temperature. Grain nucleation was apparent for films as thin as 10 nm. Over the thickness range studied, grain size increased with film thickness, whereas average surface roughness started to increase with film thickness, but then remained fairly constant at approximately 1 nm for a film thickness greater than 25 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Krause, M., Stiebig, H, Carius, R., Wagner, H., Mat. Res. Soc. Symp. Proc. 664, A26.5 (2001).Google Scholar
2. Ferlauto, A.S., Rovira, P.I., Koval, R.J., Wronski, C.R., Collins, R.W., Mat. Res. Soc. Symp. Proc. 609, A2.2.1 (2000).Google Scholar
3. Fujiwara, H., Toyoshima, Y., Kondo, M., Matsuda, A., Mat. Res. Soc. Symp. Proc. 609, A2.1.1 (2000).Google Scholar
4. Jiang, J., Chen, K., Feng, D., and Sun, D., Thin Solid Films 230, 7 (1993).Google Scholar
5. Wagner, S., Gleskova, H., Cheng, I-Chun, Wu, M., Thin Solid Films, in press.Google Scholar
6. Koh, Joohyun, Ferlauto, A. S., Rovira, P. I., Wronski, C.R. and Collins, R.W., Appl. Phys. Lett. 75, 2286 (1999).Google Scholar
7. Vallat-Sauvain, E., Kroll, U., Meier, J., Shah, A., Pohl, J., J. Appl. Phys. 87, 3137 (2000).Google Scholar
8. Kočka, J., Stuchlíková, H., Stuchlík, J., Rezek, B., Švrček, V., Fojtík, P., Pelant, I. and Fejfar, A., in Polycrystalline Semiconductors VI, Solid State Phenomena 80-81, 213 (2000), edited by Bonnaud, O., Mohammed-Brahim, T., Strunk, H. P., and Werner, J. H. (Scitec Publications, Switzerland 2001).; J. Kočka, A. Fejfar, V. Vorlicek, H. Stuchlíková, and J. Stuchlík, Mater. Res. Soc. Symp. Proc. 557, 483 (1999).Google Scholar
9. Hazra, S., Sakata, I., Yamanaka, M. and Suzuki, E., Appl. Phys. Lett. 80, 1159 (2002)Google Scholar
10. Cabarrocas, P. Roca i, Layadi, N., Heitz, T., Drevillon, B. and Solomon, I., Appl. Phys. Lett. 66, 3609 (1995).Google Scholar
11. Karg, F.H., Bjöhm, H. and Pierz, K., J. Non-Cryst. Solids 114, 477 (1989).Google Scholar
12. Paul, W., Jones, S.J., Marques, F.C., Pang, D., Turner, W.A., Wetsel, A.E., Wickboldt, P., and Chen, J., Mat. Res. Soc. Symp. Proc. 219, 211 (1991).Google Scholar
13. Stewart, A.D., Jones, D.I., Willeke, G., Phil.Mag.B 48, 333 (1983).Google Scholar
14. Gonzalez-Hernandez, J., Azarbayejani, G.H., Tsu, R., Pollak, F.H., Appl. Phys. Lett. 47, 1350 (1985).Google Scholar
15. Drevillon, B., Godet, C., Antoine, A.M., Mat. Res. Soc. Symp. Proc. 75, 341 (1986).Google Scholar
16. Woodyard, J.R., Gonzalez-Hernandez, J., Young, R.T., Piontkowski, J., Mat. Res. Soc. Symp. Proc. 70, 65 (1986).Google Scholar
17. Godet, C., Drevillon, B., Senemaud, C., J. Non-Cryst. Solids 97, 431 (1987).Google Scholar
18. Drevillon, B., Godet, C., J. Appl. Phys. 64, 145 (1988).Google Scholar
19. Godet, C., Cabarrocas, P. Roca i, Gujrathi, S.C., Burret, P.A., J. Vac. Sci. Technol. A 10, 3517 (1992).Google Scholar
20. Aoki, T., Nishikawa, Y., Fukasawa, K., Sheng, W.Q., Hirose, M., J. Non-Cryst. Solids 164-166, 91 (1993).Google Scholar
21. Poulsen, P.R., Wang, M., Xu, J., Li, W., Chen, K., Wang, G., and Feng, D., J. Appl. Phys. 84, 3386 (1998).Google Scholar
22. Jordan, W.B. and Wagner, S., Mat. Res. Soc. Symp. Proc. 715, A18.2.1 (2002).Google Scholar
23. Yu, P.Y., Cardona, M., Fundamentals of Semiconductors, Springer-Verlag, 1996. pp. 375392.Google Scholar
24. Palik, E.D., ed., Handbook of Optical Constants of Solids. Academic Press, 1985. pp. 472473.Google Scholar
25. Xu, J., Chen, K., Feng, D., Miyazaki, S., Hirose, M., Thin Solid Films 335 130 (1998).Google Scholar
26. DeHoff, R. T., Applied Metallography, edited by Voort, G. F. Vander (Van Nostrand Reinhold Company, New York, 1986), pp. 8999.Google Scholar
27. González-Hernández, J., Rev. Mex. de Fisica 35 648 (1989).Google Scholar
28. Westra, K.L. and Thomson, D.J., J. Vac. Sci. Technol. B 13 2, 344 (1995).Google Scholar
29. Westra, K.L. and Thomson, D.J., J. Vac. Sci. Technol. B 12 6, 3176 (1994).Google Scholar
30. Sedin, D.L. and Rowlen, K.L., App. Surf. Sci. 182, 40 (2001).Google Scholar