Published online by Cambridge University Press: 16 February 2011
We examine the energy and time scales of configurational relaxation around the dangling bond defect, D, in hydrogenated Amorphous silicon (a-Si:H). After D captures or emits charge, its bond angle, electron energy eigenvalues and local structural environment all change. This determines the measured electronic energy levels; we use previous theoretical results and experimental data to estimate the density of gap states in the different atomic configurations of D. We also describe D relaxation effects observed in experiments, including the very slow relaxations found in recent transient capacitance measurements. To explain the unusual T-independent kinetics of transient capacitance carrier emission, we propose a model of “structural memory” in a-Si:H. After carrier capture, neighbors of D retain memory of their pre-capture configuration for seconds at 300K. The rate-limiting step to carrier emission is an effectively one-dimensional random walk of these neighbors through their configuration space and back to the pre-capture configuration. The final, activated, step of emission is very rapid. We describe analytic and monte Carlo calculations that support the structural memory Model and propose possible microscopic Mechanisms.