Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T01:10:28.158Z Has data issue: false hasContentIssue false

Structure, Energy, and Electronic Properties of the Σ = 13 {510} Tilt Grain Boundary Structure In Si

Published online by Cambridge University Press:  10 February 2011

J. R. Morris
Affiliation:
Ames Laboratory–U. S. Department of Energy, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
Z.-Y. Lu
Affiliation:
Ames Laboratory–U. S. Department of Energy, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
D. M. Ring
Affiliation:
Ames Laboratory–U. S. Department of Energy, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
J.-B. Xiang
Affiliation:
Ames Laboratory–U. S. Department of Energy, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
K.-M. Ho
Affiliation:
Ames Laboratory–U. S. Department of Energy, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
C. Z. Wang
Affiliation:
Ames Laboratory–U. S. Department of Energy, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
C.-L. Fu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

We have examined a variety of structures for the {510} symmetric tilt boundary in Si, using first-principles calculations. These calculations show that the observed structure in Si is the lowest energy structure. This structure is more complicated than what is necessary to preserve four-fold coordination. We compare the results to classical and tight-binding models, in order to test these empirical approaches.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hornstra, J. R., Physica 25, 409 (1959).Google Scholar
2. Grovenor, C. R. M., J. Phys. C 18, 4079 (1985).Google Scholar
3. Arias, T. A. and Joannopoulos, J. D., Phys. Rev. B 49, 4525 (1994).Google Scholar
4. Maiti, A., Chisholm, M. F., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Letters 77, 1306 (1996).Google Scholar
5. Bacmann, J. J., Papon, A. M., Petit, M., and Silvestre, G., Phil. Mag. A 51, 697 (1985).Google Scholar
6. Bourret, A. and Rouviere, J. L., in Polycrystalline Semiconductors, Vol. 35 of Springer Proceedings in Physics, edited by Werner, J. H., Möller, H. J., and Strunk, H. P. (Springer-Verlag, Berlin, Heidelberg, 1989), p. 8.Google Scholar
7. Rouviere, J. L. and Bourret, A., in Polycrystalline Semiconductors, Vol. 35 of Springer Proceedings in Physics, edited by Werner, J. H., Moller, H. J. and Strunk, H. P. (Springer-Verlag, Berlin, Heidelberg, 1989), p. 19.Google Scholar
8. Rouviere, J. L. and Bourret, A., Colloque de Physique 51, Cl (1990).Google Scholar
9. Chisholm, M. F. and Pennycook, S. J., MRS Bulletin 22, 53 (1997).Google Scholar
10. Kohyama, M., Phys. Stat. Sol. (b) 141, 71 (1987).Google Scholar
11. Paxton, A. T. and Sutton, A. P., J. Phys. C 21, L481 (1988).Google Scholar
12. Levi, A. A., Smith, D. A., and Wetzel, J. T., J. Appl. Phys. 69, 2048 (1991).Google Scholar
13. Morris, J. R. et al., submitted to Phys. Rev. Letters.Google Scholar
14. Tersoff, J., Phys. Rev. B 38, 9902 (1988).Google Scholar
15. Hohenberg, P. and Kohn, W., Phys. Rev. 136, 864 (1964).Google Scholar
16. Kohn, W. and Sham, L. J., Phys. Rev. 140, 1135 (1965).Google Scholar
17. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
18. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
19. Stumpf, R., Gonze, X., and Scheffler, M. (unpublished).Google Scholar
20. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
21. Takeuchi, N., Selloni, A., Shkrebtii, A., and Tosatti, E., Phys. Rev. B 44, 13611 (1991).Google Scholar
22. Meade, R. D. and Vanderbilt, D., Phys. Rev. B 40, 3905 (1989).Google Scholar
23. Cunningham, S. L., Phys. Rev. B 10, 4988 (1974).Google Scholar
24. Pan, B. C., Wang, C. Z., and Ho, K. M. (unpublished).Google Scholar
25. Queisser, H. J. and Werner, J. H., Mat. Res. Soc. Symp. Proc. 106, 53 (1988).Google Scholar
26. DiVincenzo, D. P., Alerhand, O. L., Schlüter, M., and Wilkins, J. W., Phys. Rev. Lett. 56, 1925 (1986).Google Scholar