Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T10:18:39.175Z Has data issue: false hasContentIssue false

Structure of Soluble Silicates

Published online by Cambridge University Press:  15 February 2011

Dale W. Schaefer
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Keith D. Keefer
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Small angle x-ray scattering (SAXS) is the technique of choice for the determination of structure on the 10–1000Å scale. We have used this technique to study the growth and topology of the macromolecules which precede gelation in several chemical systems used in sol-gel glass technology. The results show that branched polymers, as opposed to colloids, are formed. The alcoholic silica system is akin to organic systems where gelation occurs through growth and crosslinking of chain molecules. Data are reported from both the Porod and Guinier regions of the SAXS curve and these data are interpreted in terms of geometrical structures predicted by various disorderly growth processes. The results indicate that the degree of crosslinking can be controlled by catalytic conditions. The degree of crosslinking may, in turn, control phase separation and processability to a dense glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brinker, C. J., Keefer, K. D., Schaefer, D. W., Assink, R. A., Kay, B. D., and Ashley, C. S., J. Non. Cryst. Solids, 63, 45 (1984).Google Scholar
2. Brinker, C. J., Keefer, K. D., Schaefer, D. W., and Ashley, C. S., J. Noncryst. Solids, 48, 47 (1982).Google Scholar
3. Assink, R. A. and Kay, B. D. in Better Ceramics Through Chemistry, edited by Brinker, C. J., Ulrich, D. R., and Clark, D. E. (Elsevier-North Holland, New York, 1984).Google Scholar
4. Brinker, C. J., Ibid.Google Scholar
5. Keefer, K. D., Ibid.Google Scholar
6. Edwards, C. J. C., Richards, R. W., Stepto, R. F. T., Dodgson, K., Higgins, J. S., and Semlyen, J. A., Polymer, 25, 365 (1984).CrossRefGoogle Scholar
7. Porod, G., Kolbid Z., 124 (1951), 83.Google Scholar
8. Witten, T. and Sander, L. M., Phys. Rev. Lett., 47, 1400 (1981).CrossRefGoogle Scholar
9. Flory, P. J., Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).Google Scholar
10. Schaefer, D. W. and Curro, J. G., Ferroelectrics, 30, 49 (1980).CrossRefGoogle Scholar
11. Mandelbrot, B. B., Fractals, Form, Chance and Dimension (Freeman, San Francisco, 1977).Google Scholar
12. Family, F. in Random Walks and their Applications in the Physical and Biological Sciences, Am. Inst. of Physics, Proceedings, 109, 3372, (1984)Google Scholar
13. Schaefer, D. W. and Keefer, K. D., submitted.Google Scholar
14. Isaacson, J. and Lubensky, T. C., J. Phys. Lett. (Paris), 41, L–469, (1980).Google Scholar
15. Daoud, M. and Joanny, J. F., J. Phys. (Paris), 42, 1359 (1981).Google Scholar
16. Meakin, P., Phys. Rev. Lett., 51, 1119 (1983);Google Scholar
16a Kolb, M., Botet, R. and Jullien, J., Phys. Rev. Lett., 51, 1123 (1983).CrossRefGoogle Scholar
17. deGennes, P-G., C. R. Acad. Sci. Paris, 291, 17 (1980).Google Scholar
18. Schaefer, D. W., Polymer, 25, 387 (1984).Google Scholar
19. Family, F., J. Phys. A, 13, L325 (1980).Google Scholar
20. Wiltzius, P., Haller, I., Cannell, D., and Schaefer, D. W., Phys. Rev. Lett., 51, 1183 (1983).Google Scholar
21. Iler, R. K., The Chemistry of Silica, (John Wiley, New York, 1979).Google Scholar
22. Sakka, S. in Better Ceramics through Chemistry, edited by Brinker, C. J., Ulrich, D. R., and Clark, D. E. (Elsevier-North Holland, New York, 1984).Google Scholar
23. Tanaka, T., Phys. Rev. Lett., 40, 820 (1978).CrossRefGoogle Scholar
24. Basil, R. and Gupta, M. K., Ferroelectrics, 30, 63 (1980).CrossRefGoogle Scholar
25. Hirokawa, Y., Katayama, S., and Tanaka, T., preprint, “Effects of Network Structure in the Phase Transition of Acrylamide-Sodium Acrylate Copolymer Gels.”Google Scholar
26. Tanaka, T., Ishiwata, S., and Ishimoto, C., Phys. Rev. Lett., 38, 771 (1977).Google Scholar
27. Hochberg, A., Tanaka, T., and Nicoli, D., Phys. Rev. Lett., 43, 217 (1979).Google Scholar
28. Schaefer, D. W., Keefer, K. D., Brinker, C. J., Polym. Preprints, Am. Chem. Soc., Division of Polymer Chemistry, 24, 239 (1983).Google Scholar