Article contents
Structure-Property Relationships of BaCeO Perovskites for the Oxidative Dehydrogenation of Alkanes
Published online by Cambridge University Press: 10 February 2011
Abstract
The oxidative dehydrogenation (ODH) reactions for the formation of two important organic feedstocks ethylene and propylene are of great interest because of the potential in capital and energy savings associated with these reactions. Theoretically, ODH can achieve high conversions of the starting materials (ethane and propane) at lower temperatures than conventional dehydrogenation reactions. The important focus in our study of ODH catalysts is the development of a structure-property relationship for catalyst with respect to selectivity, so as to avoid the more thermodynamically favorable combustion reaction. Catalysts for the ODH reaction generally consist of mixed metal oxides. Since for the most selective catalyst lattice oxygen is known to participate in the reaction, catalysts are sought with surface oxygen atoms that are labile enough to perform dehydrogenation, but not so plentiful or weakly bound as to promote complete combustion. Also, catalysts must be able to replenish surface oxygen by transport from the bulk.
Perovskite materials are candidates to fulfill these requirements. We are studying BaCeO3 perovskites doped with elements such as Ca, Mg, and Sr. During the ODH of the alkanes at high temperatures, the perovskite structure is not retained and a mixture of carbonates and oxides is formed, as revealed by XRD. While the Ca doped materials showed enhanced total combustion activity below 600°C, they only showed enhanced alkene production at 700°C. Bulk structural and surface changes, as monitored by powder X-ray diffraction, and X-ray photoelectron spectroscopy are being correlated with activity in order to understand the factors affecting catalyst performance, and to modify catalyst formulations to improve conversion and selectivity.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998
References
REFERENCES
- 2
- Cited by