Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-30T23:33:08.607Z Has data issue: false hasContentIssue false

Studies of Nanomechanical Properties of Pulsed Laser Deposited NbN films on Si Using Nanoindentation

Published online by Cambridge University Press:  24 January 2012

M. A. Mamun
Affiliation:
Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA Applied Research Center, Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
A. H. Farha
Affiliation:
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529, USA Applied Research Center, Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
Y. Ufuktepe
Affiliation:
Department of Physics, Cukurova University, Adana, 01330, TURKEY
H. E. Elsayed-Ali
Affiliation:
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529, USA Applied Research Center, Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
A. A. Elmustafa
Affiliation:
Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA Applied Research Center, Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
Get access

Abstract

Nanomechanical and structural properties of pulsed laser deposited niobium nitride thin films were investigated using X-ray diffraction, atomic force microscopy, and nanoindentation. NbN film reveals cubic δ-NbN structure with the corresponding diffraction peaks from the (111), (200), and (220) planes. The NbN thin films depict highly granular structure, with a wide range of grain sizes that range from 15-40 nm with an average surface roughness of 6 nm. The average modulus of the film is 420±60 GPa, whereas for the substrate the average modulus is 180 GPa, which is considered higher than the average modulus for Si reported in the literature due to pile-up. The hardness of the film increases from an average of 12 GPa for deep indents (Si substrate) measured using XP CSM and load control (LC) modes to an average of 25 GPa measured using the DCM II head in CSM and LC modules. The average hardness of the Si substrate is 12 GPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gol’tsman, G. N., Okunev, O., Chulkova, G., Lipatov, A., Semenov, A., Smirnov, K., Voronov, B., Dzardanov, A., Williams, C. and Sobolewski, R., Applied Physics Letters 79, 705 (2001).Google Scholar
2. Kaul, A. B., Sands, T. D. and Van Duzer, T., Journal of Materials Research 16, 1223 (2001).Google Scholar
3. Antoine, C. Z., Berry, S., Aurino, M., Jacquot, J. F., Villegier, J. C., Lamura, G. and Andreone, A., IEEE Transactions on Applied Superconductivity 21, 2601 (2011).Google Scholar
4. Lascialfari, A., Rigamonti, A., Bernardi, E., Corti, M., Gauzzi, A. and Villegier, J. C., Physical Review B (Condensed Matter and Materials Physics) 80, 104505 (2009).Google Scholar
5. Kneisel, P., Ciovati, G., Sekutowicz, J. and Turlington, L., IEEE Transactions on Applied Superconductivity 19, 1416 (2009).Google Scholar
6. Havey, K. S., Zabinski, J. S. and Walck, S. D., Thin Solid Films 303, 238 (1997).Google Scholar
7. Benkahoul, M., Martinez, E., Karimi, A., Sanjines, R. and Levy, F., Surface and Coatings Technology 180-181, 178183 (2004).Google Scholar
8. Ivashchenko, V. I., Turchi, P. E. A. and Olifan, E. I., Physical Review B (Condensed Matter and Materials Physics) 82, 054109 (2010).Google Scholar
9. Schneider, R., Freitag, B., Gerthsen, D., Ilin, K. S. and Siegel, M., Crystal Research and Technology 44, 1115 (2009).Google Scholar
10. Zenghu, H., Xiaoping, H., Jiawan, T., Geyang, L. and Gu, M., Surface and Coatings Technology 179, 188 (2004).Google Scholar
11. Wen, M., Meng, Q. N., Hu, C. Q., An, T., Su, Y. D., Yu, W. X. and Zheng, W. T., Surface and Coatings Technology 203, 1702 (2009).Google Scholar
12. Ishizaka, A. and Shiraki, Y., Journal of the Electrochemical Society 133, 666 (1986).Google Scholar
13. Boffa, V., Gambardella, U., Marotta, V., Morone, A., Murtas, F., Orlando, S. and Parisi, G. P., Applied Surface Science 106, 361 (1996).Google Scholar
14. Chaudhuri, S., Nevala, M. R., Hakkarainen, T., Niemi, T. and Maasilta, I. J., (Institute of Electrical and Electronics Engineers Inc., 445 Hoes Lane / P.O. Box 1331, Piscataway, NJ 08855-1331, United States, 2011) p. 143.Google Scholar
15. Huhne, R., Guth, K., Kidszun, M., Kaltofen, R., Schultz, L. and Holzapfel, B., Journal of Physics D: Applied Physics 41, 245404 (2008).Google Scholar
16. Oliver, W. C. and Pharr, G. M., Journal of Materials Research 19, 3 (2004).Google Scholar
17. Sundgren, J. E. and Hentzell, H. T. G., Journal of Vacuum Science and Technology A (Vacuum, Surfaces, and Films) 4, 2259 (1986).Google Scholar
18. Cammarata, R. C., Schlesinger, T. E., Kim, C., Qadri, S. B. and Edelstein, A. S., Applied Physics Letters 56, 1862 (1990).Google Scholar
19. Mishra, P., Bhattacharyya, S. R. and Ghose, D., Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 266, 1629 (2008).Google Scholar
20. Stone, D. S., Journal of Materials Research 13, 3207 (1998).Google Scholar