Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T06:59:12.710Z Has data issue: false hasContentIssue false

Study for the Interfacial Effect between a Crawling Cell and a Substrate on Chemotaxis

Published online by Cambridge University Press:  10 March 2011

Jihwan Song
Affiliation:
Department of Mechanical Engineering, Sogang University, 1 Shinsoo-dong, Mapo-go, Seoul, Republic of Korea
Dongchoul Kim
Affiliation:
Department of Mechanical Engineering, Sogang University, 1 Shinsoo-dong, Mapo-go, Seoul, Republic of Korea
Get access

Abstract

Chemotaxis is one of the essential mechanisms responsible for various complex biological processes. For a crawling cell, the interface between the cell and the substrate plays an important role in the chemotactic migration. This paper presents a three-dimensional dynamic model to investigate the effect of the interface between a crawling cell and a substrate on its chemotaxis. The coupled mechanisms of chemotaxis, the surface energy of the cell, and the interface between the cell and the substrate are incorporated into a diffuse interface model. Simulations reveal rich dynamics of a crawling cell associated with the interfacial condition, and confirm the high possibility of adequate predictions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berg, H. C. and Brown, D. A., Nature 239, 500 (1972).Google Scholar
2. Adler, J., Science 166, 1588 (1969).10.1126/science.166.3913.1588Google Scholar
3. Adler, J., J. Gen. Microbiol. 74, 77 (1973).10.1099/00221287-74-1-77Google Scholar
4. Robert, D. N., Paul, G. Q. and Richard, L. S., J. Immunol. 115, 1650 (1975).Google Scholar
5. Zigmond, S. H., J. Cell Biol. 75, 606 (1977).10.1083/jcb.75.2.606Google Scholar
6. Zhou, Y., Doerschuk, C. M., Anderson, J. M., and Marchant, R. E., J. Biomed. Mater. Res. A 69A, 611 (2004).10.1002/jbm.a.30015Google Scholar
7. Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., and Geiger, B., Nature Cell Biology 3, 466 (2001).10.1038/35074532Google Scholar
8. Keller, E. F., J. Theor. Biol. 30, 225 (1971).Google Scholar
9. Nishimura, S. I. and Sasai, M., J. Theor. Biol. 245, 230 (2007).Google Scholar
10. Savill, N. J. and Hogeweg, P., J. Theor. Biol. 184, 229 (1997).Google Scholar
11. Cahn, J. W., J. Chem. Phys. 28, 258 (1958).10.1063/1.1744102Google Scholar
12. Folch, R. and Plapp, M., Phys. Rev. E 72 (2005).Google Scholar
13. Alber, M., Chen, N., Glimm, T., and Lushnikov, P. M., Phys. Rev. E 73, 051901 (2006).10.1103/PhysRevE.73.051901Google Scholar
14. Cahn, J. W., J. Chem. Phys. 28, 258 (1958).10.1063/1.1744102Google Scholar
15. Frevert, C. W., Boggy, G., Keenan, T. M., and Folch, A., Lab Chip. 6, 849 (2006).Google Scholar
16. Jeon, N. L., Baskaran, H., Dertinger, S. K. W., Whitesides, G. M., Van de Water, L., and Toner, M., Nat. Biotechnol. 20, 826 (2002).10.1038/nbt712Google Scholar
17. Tharp, W. G., Yadav, R., Irimia, D., Upadhyaya, A., Samadani, A., Hurtado, O., Liu, S. Y., Munisamy, S., Brainard, D. M., Mahon, M. J., Nourshargh, S., van Oudenaarden, A., Toner, M. G., and Poznansky, M. C., J. Leukocyte Biol. 79, 539 (2006).10.1189/jlb.0905516Google Scholar