Published online by Cambridge University Press: 01 February 2011
The electronic properties of amorphous silicon films prepared by the expanding thermal plasma technique have been studied using steady-state and transient photoconductivity measurements. It is found that films deposited at a substrate temperature of 400°C have a conduction band tail slope of 29 meV, deep defect density of order 3×1016 cm-3, an Urbach tail slope of 65 meV, defect absorption of 5-10 cm-1, and a mobility-lifetime product of 1.3×10-7 cm2 V-1. Aslight increase in defect density and reduction in mobility-lifetime product is observed on moderate light-soaking. The overall optoelectronic quality is somewhat poorer than commercial PECVD material, but there is scope for improvement as deposition conditions are further optimised.