Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T02:27:59.198Z Has data issue: false hasContentIssue false

Study of GaSb Junction Devices by Cathodoluminescence and Scanning Tunneling Spectroscopy

Published online by Cambridge University Press:  10 February 2011

P. Hidalgo
Affiliation:
Departamento de Fisica de Materiales, Facultad de Fisicas, Universidad Complutense, 28040 Madrid, Spain
B. Méndez
Affiliation:
Departamento de Fisica de Materiales, Facultad de Fisicas, Universidad Complutense, 28040 Madrid, Spain
J. Piqueras
Affiliation:
Departamento de Fisica de Materiales, Facultad de Fisicas, Universidad Complutense, 28040 Madrid, Spain
P. S. Dutta
Affiliation:
Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180–3590
Get access

Abstract

GaSb p-n junctions formed by Zn diffusion in Te-doped n-GaSb single crystalline wafers have been characterized by cathodoluminescence (CL) microscopy and by scanning tunneling spectroscopy. CL plane-view observations of the Zn diffused side enable to study the homogeneity of the diffusion treatment. Spectra recorded by current imaging tunneling spectroscopy (CITS) in the n and p sides of the junction, clearly show the respective conductive behaviour and provide information on the local surface band gaps. Results are related to the diffusion profile measured by secondary ion mass spectrometry (SIMS).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Krier, A., Parry, M.K. and Lanchester, D. S., Semicond.Sci.Technol. 6, 1066(1991).Google Scholar
2. Gruenbaum, P.E., Dinh, V.T. and Sundaram, V.S., Solar Energy Materials and Solar Cells 32, pp. 61 (1994).Google Scholar
3. Sulima, O., Beckert, R., Bett, A., Cox, J. and Mauk, M., Presented in the Third International Conference on MidInfrared Optoelectronics, Aachen, Germany (1999).Google Scholar
4. Sulima, O. and Bett, A., Presented in the Eleventh International Photovoltaic Science and Engineering Conference, Sapporo, Japan (1999).Google Scholar
5. Bett, A., Keser, S., Stollwerck, G. and Sulima, O., AlP Conference Proceedings 401, 41(1997).Google Scholar
6. Méndez, B. and Piqueras, J., J. Appl. Phys. 69, 2776(1991).Google Scholar
7. Asenjo, A., Buendía, A., Gómez-Rodríguez, J.M. and Baró, A., J. Vac.Sci.Technol. B12, 1658 (1994).Google Scholar
8. Feenstra, R.M., Stroscio, J.A. and Fein, A.P., Surf.Sci. 181, 295(1987).Google Scholar
9. Sundaram, V.S. and Gruenbaum, P.E., J. Appl.Phys. 73, 3787(1993).Google Scholar
10. Dutta, P.S., Méndez, B., Piqueras, J., Diéguez, E. and Bhat, H.L., J. Appl.Phys. 80, 1112(1996).Google Scholar
11. Dutta, P.S., Rao, K.S. Ri Koteswara, Bhat, H.L., Kumar, V., Appl. Phys. A. 61 149152 (1995).Google Scholar
12. Hidalgo, P., Méndez, B., Piqueras, J., Plaza, J. and Diéguez, E., J. Appl. Phys. 86, 1449(1999).Google Scholar
13. Hidalgo, P., Méndez, B., Piqueras, J., Dutta, P.S. and Diéguez, E., Phys.Rev. B60, 10613 (1999).Google Scholar