Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:34:12.979Z Has data issue: false hasContentIssue false

Study of optical losses in mechanically stacked dye-sensitized/CdTe tandem solar cells

Published online by Cambridge University Press:  23 August 2013

Vincent Barrioz*
Affiliation:
Centre for Solar Energy Research, Glyndŵr University, OpTIC, St Asaph, LL17 0JD, UK.
Simon Hodgson
Affiliation:
Centre for Solar Energy Research, Glyndŵr University, OpTIC, St Asaph, LL17 0JD, UK.
Peter Holliman
Affiliation:
School of Chemistry, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
Arthur Connell
Affiliation:
School of Chemistry, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
Giray Kartopu
Affiliation:
Centre for Solar Energy Research, Glyndŵr University, OpTIC, St Asaph, LL17 0JD, UK.
Andrew J. Clayton
Affiliation:
Centre for Solar Energy Research, Glyndŵr University, OpTIC, St Asaph, LL17 0JD, UK.
Stuart J.C. Irvine
Affiliation:
Centre for Solar Energy Research, Glyndŵr University, OpTIC, St Asaph, LL17 0JD, UK.
Shafiul Monir
Affiliation:
Centre for Solar Energy Research, Glyndŵr University, OpTIC, St Asaph, LL17 0JD, UK.
Matthew L. Davies
Affiliation:
School of Chemistry, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
Get access

Abstract

In a constant effort to capture effectively more of the spectral range from the sun, multi-junction cells are being investigated. In this context, the marriage of thin film and dye-sensitized solar cells (DSC) PV technologies may be able to offer greater efficiency whilst maintaining the benefits of each individual technology. DSC devices offer advantages in the nature of both the metal oxide photo-electrode and dye absorption bands, which can be tuned to vary the optical performance of this part of a tandem device, while CdTe cells absorb the majority of light above their band-gap in only a few microns of thickness. The key challenge is to assess the optical losses with the goal of reaching a net gain in photocurrent and consequently increased conversion efficiency. This study reports on the influence of optical losses from various parts of the stacked tandem structure using UV-VIS spectrometry and EQE measurements. A net gain in photocurrent was achieved from a model developed for the DSC/CdTe mechanically stacked tandem structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shockley, W., Queisser, H.J., J. Appl. Phys. 32 (1961) 510.CrossRefGoogle Scholar
Green, M.A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E.D., Progr. Photovolt.: Res. Appl. 21 (2013) 1.CrossRefGoogle Scholar
Kartopu, G., Clayton, A.J., Brooks, W.S.M., Hodgson, S.D., Barrioz, V., Maertens, A., Lamb, D.A. and Irvine, S.J.C., Prog. Photovolt: Res. Appl. (2012) (DOI: 10.1002/pip).Google Scholar
Yella, A., Lee, H.-W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W-G., Yeh, C.-Y., Zakeeruddin, S.M., Grätzel, M., Science 334 (2011) 629.CrossRefGoogle Scholar
Olson, J.M., Friedman, D.J., Kurtz, S., Handbook of Photovoltaic Science and Engineering (1 st Ed.), Luque, A., and Hegedus, S.; Wiley: New York, 2003, Chapter 9, pp. 359411.Google Scholar
Yang, J., Chen, W., Yu, B., Wang, H. and Yan, D., Organic Electronics 13 (2012) 1018.CrossRefGoogle Scholar
Jeong, W.-S., Lee, J.-W., Jung, S., Yun, J.H. and Park, N.-G., Sol. Energ. Mat. Sol. Cells 95 (2011) 3419.CrossRefGoogle Scholar
Coutts, T.J., Emery, K.A. and Ward, J.S., Prog. Photovolt: Res. Appl. 10 (2002) 195.CrossRefGoogle Scholar
Liska, P., Thampi, K.R., Grätzel, M., Bremaud, D., Rudmann, D., Ipadhyaya, H.M., Tiwari, A.N., Appl. Phys. Lett. 88 (2006) 203103.CrossRefGoogle Scholar
Barrioz, V., Holliman, P., Clayton, A.J., Connell, A., Irvine, S.J.C., Davies, M.L., Hodgson, S., PVSAT-8 Conference Proceedings, Newcastle (2012).Google Scholar
Holliman, P.J., Mohsen, M., Connell, A., Davies, M.L., Al-Salihi, K., Pitak, M.B., Tizzard, G.J., Coles, S.J., Harrington, R.W., Clegg, W., Serpa, C., Fontes, O.H., Charbonneau, C. and Carnie, M.J., J. Mater. Chem. 22 (2012) 13318.CrossRefGoogle Scholar
Irvine, S.J.C., Barrioz, V., Lamb, D., Jones, E.W. and Rowlands-Jones, R.L., J. Cryst. Growth 310 (2008) 5198.CrossRefGoogle Scholar
Dematsu, S.H. and Sites, J.R., Proc. IEEE PV Spec. Conf. 31 (2005) 347.Google Scholar