Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-14T17:18:53.824Z Has data issue: false hasContentIssue false

Study of Optical Vibrations Modes of Mineral Graphite by Micro Raman Spectroscopy

Published online by Cambridge University Press:  20 December 2012

R. A. Silva-Molina
Affiliation:
Universidad Autónoma de San Luis Potosí, Doctorado Institucional de Ciencia e Ingeniería en Materiales, DICIM 78290, San Luis Potosí, S.L.P., México
R. Gámez-Corrales*
Affiliation:
Departamento de Física, Universidad de Sonora, Rosales y Blvd. Luis Encinas 78000, Hermosillo, Sonora, México.
J. M. Hernández-Cazares
Affiliation:
Departamento de Geología, Universidad de Sonora, Rosales y Blvd Luis Encinas 78000, Hermosillo, Sonora, México.
I. G. Espinoza-Maldonado
Affiliation:
Departamento de Geología, Universidad de Sonora, Rosales y Blvd Luis Encinas 78000, Hermosillo, Sonora, México.
Get access

Abstract

We present experimental and theoretical Raman spectra of natural graphite mineral of Sonora, Mexico. In this work, we take the advantage of the utility of the RAMAN spectroscopy as a technique to determine the crystallinity and structure of graphite mineral. The RAMAN spectroscopy provides information that can be used to determine the degree of graphitization, which in turn can be used to know the metamorphic degree of the host rock. The resulting RAMAN spectra of graphite were divided in first and second order regions, in the first region (1100-1800cm-1) the E2g vibration mode with D6h crystal symmetry occurs at 1580cm-1 (G band) that indicates poorly organized graphite, additional bands appears in the first order region at 1350 cm-1 (D band) called the defect band, and another at 1620 cm-1 (D* band). The second-order region (2200-3400cm-1) shows several bands at ~2400 ~2700 ~2900 ~3300cm-1, all of them attributed to electron-phonon interactions or combination scattering. The density functional theory calculations were applied to determine the vibrational properties and the stacking layers of graphite.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Corona-Esquivel, T. J., Benavides-Muñoz, R., Piedad-Sánchez, M.E., Ferrusquía -Villafranca, N., Bol.Soc.Geol.Mex. LVIII, 141160 (2006).Google Scholar
Sobron Grañon, P., Sanz-Arrans, A., García de la Santa, T.A., and Rull Pérez, F., Drainage-Macla, 10, 140 (2008).Google Scholar
Dresselhaus, M. S., Dresselhaus, G., Saito, R. and Jorio, A., Phys. Rep. 409, 4799 (2005).CrossRefGoogle Scholar
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S. and Geim, A. K., Phys. Rev. Lett. 97, 187401 (2006).CrossRefGoogle Scholar
Reich, S. and Thomsen, C., Phil. Trans. R. Soc. Lond. A, 362, 22712288 (2004).CrossRefGoogle Scholar
Beyssac, O., Brunet, F., Petitet, J. P., Goffé, B. and Rouzaud, J. N., Eur. J. Min. 15, 937951 (2003).CrossRefGoogle Scholar
Beyssac, O., Rouzaud, J. N., Goffé, B., Brunet, F. and Chopin, C., Contr. Min. Petr. 143, 1931 (2002).CrossRefGoogle Scholar
Nasdala, L., Smith, D.C., Kaindl, R., Ziemann, M.A., Raman Spectroscopy: Analytical Perspectives in Mineralogical Research. Beran, A., Libowitzky, A. and , E., (Eds., Emu Notes in Mineralogy: Spectroscopic Methods in Mineralogy. European Mineralogical Union, 2004) pp. 349422.Google Scholar
Pasteris, J. and Wopenka, B., Can. Miner., 29, 1 (1991).Google Scholar
Tuinstra, F., Koenig, J. L., J. Chem. Phys., 53, 1126 (1970).CrossRefGoogle Scholar
Lee, Y., J. Nucl. Mat., 325, 174 (2004).CrossRefGoogle Scholar
Tsu, R., González, H., Hernández, I., Solid State Commun., 27, 507510. (1987).CrossRefGoogle Scholar
Yui, T. F., Huang, E. and Xu, J., J Metamorphic Geol. 14, 115 (1996).CrossRefGoogle Scholar