Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T01:01:04.299Z Has data issue: false hasContentIssue false

Study of Polymeric Microneedle Arrays for Drug Delivery

Published online by Cambridge University Press:  01 February 2011

Aleksandr Ovsianikov
Affiliation:
A.Ovsianikov@lzh.de, Laser Zentrum Hannover e.V., Nanotechnology, Hollerithallee 8, Hannover, 30419, Germany, +495112788233, +495112788100
Anand Doraiswamy
Affiliation:
adorais@email.unc.ed, University of North Carolina, Chapel Hill, NC, 27599-7575, United States
Roger Narayan
Affiliation:
roger_narayan@msn.com, University of North Carolina, Chapel Hill, NC, 27599-7575, United States
Boris N. Chichkov
Affiliation:
B.Chichkov@lzh.de, Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover, 30419, Germany
Get access

Abstract

Two-photon polymerization (2PP) is a novel technology for the fabrication of complex three-dimensional (3D) microstructures. The number of applications employing this technology is rapidly increasing, and includes the fabrication of three-dimensional photonic crystals [1-4], medical devices, and scaffolds for tissue engineering [5, 6]. We have used 2PP to fabricate microneedle arrays with various geometries. These devices provide a unique approach for transdermal delivery of nucleic acid- and protein-based pharmacologic agents. Many of issues associated with conventional intravenous drug administration, including pain to the patient, trauma at the injection site, and difficulty in providing sustained release of a pharmacological agent, may be eliminated by applying the microneedles. The effect of microneedle geometry (e.g., tip sharpness and aspect ratio) on skin penetration was examined. Our results indicate that microneedles created using 2PP technique are suitable for in vivo use, and integration with next generation MEMS- and NEMS-based drug delivery devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maruo, S., Nakamura, O., Kawata, S., Opt. Lett. 22 (1997) 132.Google Scholar
2. Deubel, M., von Freymann, G., Wegener, M., Pereira, S., Busch, K., Soukoulis, C. M., Nat. Mater. 3 (2004) 444.Google Scholar
3. Serbin, J., Ovsianikov, A., Chichkov, B., Opt. Express 12 (2004) 5221.Google Scholar
4. Seet, K.K., Mizeikis, V., Matsuo, S., Juodkazis, S., Misawa, H., Adv. Mater. 17 (2005) 541.Google Scholar
5. Narayan, R.J., Jin, C., Doraiswamy, A., Mihailescu, I.N., Jelinek, M., Ovsianikov, A., Chichkov, B.N., Chrisey, D.B., Advanced Engineering Materials 7 (12) (2005).Google Scholar
6. Doraiswamy, A., Jin, C., Narayan, R.J., Mageswaran, P., Mente, P., Modi, R., Auyeung, R., Chrisey, D.B., Ovsianikov, A., Chichkov, B., Acta Biomaterialia 2 (2006) 267.Google Scholar
7. Schlie, S., Ngezahayo, A., Ovsianikov, A., Tilman, F., Kolb, H. A., Haferkamp, H., Chichkov, B., J. Biomat. Applic., (2007)Google Scholar
8. Hadgraft, J., Guy, R.H., eds. Transdermal Drug Delivery: Developmental Issues and Research Initiatives. New York, NY: Marcel Dekker. (1989) 135.Google Scholar
9. Banker, G.S., Rhodes, C.T. eds. Modern Pharmaceutics. New York, NY: Marcel Dekker; (1996) 239.Google Scholar
10. Sivamani, R.K., Stoeber, B., Wu, G.C., Zhai, H.B., Liepmann, D., Maibach, H., Skin Research and Technology 11 (2) (2005) 152.Google Scholar
11. Mitragotri, S., J Controlled Rel. 71 (2001) 23.Google Scholar
12. Guy, R.H., J Pharm Pharmacol. 50(4) (1998) 371.Google Scholar
13. Barry, B.W. Eur J Pharm Sci. 14 (2001) 101.Google Scholar
14. Davis, S.P., Landis, B.J., Adams, Z.H., Allen, M.G., Prausnitz, M.R., J. Biomechanics 37(8) (2004) 1155.Google Scholar
15. McAllister, D.V., Wang, P.M., Davis, S.P., Park, J-H, Canatella, P.J., Allen, M.G., M.R. Prausnitz,, PNAS, 100 (24) (2003) 13755.Google Scholar