Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T23:47:47.743Z Has data issue: false hasContentIssue false

Study of SrTiO3 Gate Dielectrics

Published online by Cambridge University Press:  26 February 2011

C.Y. Liu
Affiliation:
oneone.ee89g@nctu.edu.tw, National Kaohsiung University of Applied Sciences, Department and Institute of Electronic Engineering, Kaohsiung 807, Taiwan
Tseung-Yuen Tseng
Affiliation:
tseng@cc.nctu.edu.tw, National Chiao Tung University, Department of Electronics Engineering, 1001 Ta Hsueh Road,, Hsinchu, 300, Taiwan, 886-3-5731879, 886-3-5724361
Get access

Abstract

Among various possible candidates of high-k gate dielectrics, SrTiO3 plays an important role because it has high dielectric constant and it can be epitaxially grown on silicon substrate. The fabrication process and properties of SrTiO3 gate dielectrics are reported. The effect of the addition of SiO2 on the microstructure and electrical properties of SrTiO3 gate dielectric is also presented. The minimization of the effect of interfacial layer between SrTiO3 and Si is the most important issue for obtaining high quality high-k gate dielectrics. The possible methods to improve the interfacial properties and the measurement techniques to characterize the interfacial layer are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Song, S., Kim, H. J., Yoo, J. Y., Yi, Y. H., Kim, W. S., Lee, N. I., Fujihara, K., Kang, H. K., and Moon, J. T., Tech. Dig. – Int. Electron Device Meet. 55 (2001).Google Scholar
2. Wilk, G. D., Wallace, R. M., Anthony, J. M., J. Appl. Phys. 89, 5243 (2001).Google Scholar
3. Ezhilvalavan, S., and Tseng, T. Y., J. Matter. Sci.:Mater. Electron. 10, 9 (1999).Google Scholar
4. Chin, A., Liao, C. C., Lu, C.H., Chen, W. J., and Tsia, C., Symp. VLSI Tech. Dig. 135 (1999).Google Scholar
5. Wang, J. C., Chiao, S.H., Lee, C. L., Lee, T. F., Lin, Y. M., Wang, M. F., Chen, S. C., Lu, C. Y., and Liang, M. S., J. Appl. Phys. 92, 3936 (2002).Google Scholar
6. Lee, B. H., Kang, L., Qi, W. J., Nieh, R., Jeon, Y., Onishi, K., and Lee, J. C., Tech. Dig.-Int. Electron Devices Meet. 133 (1999).Google Scholar
7. Elsenbeiser, K., Finder, J. M., Yu, Z., Ramdani, J., Curless, J. A., Hallmark, J. A., Droopad, R., Ooms, W. J., Salem, L., Bradshow, S., and Overgaard, C. D., Appl. Phys. Lett. 76, 1324 (2000).Google Scholar
8. Yu, Z., Ramdani, J., Curless, J. A., Overgaard, C. D., Finder, J. M., Droopad, R., Elsenbeiser, K. W., Hallmark, J. A., Ooms, W. J., and Kaushik, V. S., J. Vac. Sci. Technol. B 18, 2137 (2000).Google Scholar
9. Russack, M. A., Jahnes, C. V., Katz, P. E., J. Vac. Sci. Technol. A 7, 1248 (1989).Google Scholar
10. Neumayer, D. A., and Cartier, E., J. Appl. Phys. 90, 1801 (2001).Google Scholar
11. Chou, H. Y., Chen, T. M., and Tseng, T. Y., J. Phys. D: Appl. Phys. 38, 2446 (2005).Google Scholar
12. Lin, C. C., Lai, L. W., Lin, C. Y., Tseng, T. Y., Thin Solid Film (in press).Google Scholar
13. Locquet, J. P., Marchiori, C., Sousa, M., Formpeyrine, J., and Seo, J. W., J. Appl. Phys. 100, 051610 (2006).Google Scholar
14. Kang, C. S., Cho, H. J., Onishi, K., Choi, R., Kim, Y. H., Nieh, R., Han, J., Krishnan, S., Shahriar, A., and Lee, J. C.,” Tech. Dig. – Int. Electron Device Meet. (2002).Google Scholar
15. Seo, K. I., Sreenivasan, R., McIntyre, P. C., and Saraswat, K. C., Tech. Dig. – Int. Electron Device Meet. (2005).Google Scholar
16. Liu, C. Y., Chen, B. Y., Tseng, T. Y., J. Appl. Phys. 95, 5602 (2004)Google Scholar
17. Lue, H. T., Liu, C. Y., Tseng, T. Y., IEEE Electron Device Lett. 23, 553 (2002).Google Scholar