Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T01:02:54.929Z Has data issue: false hasContentIssue false

Study of the Effects of Heavy-Ion Radiation on Nanocomposite Carbon Films

Published online by Cambridge University Press:  15 February 2011

Kathleen E. Kristian
Affiliation:
Department of Chemistry, Swarthmore College, Swarthmore, PA, USA
Nadia M. Medina-Emmanuelli
Affiliation:
Department of Chemistry, Pontifical Catholic University, Ponce, PR, USA
Oscar O. Ortiz
Affiliation:
Polytechnic University of Puerto Rico, Dept. of Chemical Engineering, San Juan, PR, USA
Adolfo González
Affiliation:
University of Puerto Rico, Dept. of Physics, PO Box 23343, San Juan, PR, U.S.A.
Juan A. González
Affiliation:
University of Puerto Rico, Dept. of Physics Applied to Electronics, Humacao, PR, USA
JoelDe Jesús
Affiliation:
University of Puerto Rico, Dept. of Physics, PO Box 23343, San Juan, PR, U.S.A.
Iris M. Vargas
Affiliation:
University of Puerto Rico, Dept. of Physics, PO Box 23343, San Juan, PR, U.S.A.
Brad R. Weiner
Affiliation:
University of Puerto Rico, Dept. of Chemistry, PO Box 23346, San Juan, PR, USA
Gerardo Morell
Affiliation:
University of Puerto Rico, Dept. of Physical Sciences, San Juan, PR 00931, USA
Get access

Abstract

The compositional and microstructural transformations induced by heavy ions (GeV/amu Fe and Si ions) on nanocomposite carbon (n-C) films were investigated by Raman Spectroscopy (RS), Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectrscopy (XPS). Two identical sets of n-C films were prepared in a sulfur-assisted hot filament chemical vapor deposition (HFCVD) system using methane, hydrogen and hydrogen sulfide. Films with various sp3 C and sp2 C bonding distributions were present within each set, which were obtained by varying the substrate temperature (400-600 °C). One set of films was submitted to a 20 krad dose of energetic Si and Fe ions at the NASA space radiation simulation facility hosted in Brookhaven National Laboratory's Alternating Gradient Synchrotron (AGS). All the films showed the characteristic diamond (tetragonal sp3 C) band at around 1332 cm-1 and the graphitic (trigonal sp2 C) D and G bands at around 1350 and 1590 cm-1, respectively, evidencing their composite nature. The results indicate that sp2 C ←sp3 C interconversions take place in the nanocomposite carbon material during heavy ion irradiation. A mechanism is proposed to explain this behavior. The overall results imply that there could be a range of sp3/sp2 C ratios for which carbon bonding interconversion takes place under ion radiation without significant changes to the average composition of the material. Nanocomposite carbon materials with this characteristic would be radiation insensitive. A technique could be developed based on this carbon bonding interconversion property by using focused energetic beams onto carbon films to produce a robust information storage technology that would survive catastrophic events.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gill, K., Grabit, R., Persello, M., Stefanini, G., Vasey, F., J. Non-Crys. Sol. 216, 129 (1997)Google Scholar
2. Evans, L.G., Starr, R., Brückner, J., Boynton, W.V., Bailey, S.H., Trombka, J.I., Nucl. Instr. Meth. Phys. Res. A 422, 586 (1999)Google Scholar
3. Jiao, S., Sumant, A., Kirk, M.A., Gruen, D.M., Krauss, A. R., and Auciello, O., J. Appl. Phys. 90, 183 (2001) and references therein.Google Scholar
4. Spencer, E. G., Schmidt, P. H., Roy, D. C. and Salsalone, F. J., Appl. Phys. Lett. 29, 118 (1976)Google Scholar
5. Matsumoto, S., Sato, Y., Kamo, M. and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).Google Scholar
6. Nistor, L. C., Landuyt, J. Van, Ralchenko, V. G., Obraztsova, E. D. and Smolin, A. A., Diamond Relat. Mater. 6, 159 (1997) and references therein.Google Scholar
7. Gupta, S., Weiner, B.R., Morell, G., J. Mater. Res. 18, 363 (2003)Google Scholar
8. Gupta, S., Weiner, B. R., Nelson, W. H., Morell, G., J. Raman Spectr. 34, 192 (2003)Google Scholar
9. Haubner, R. and Sommer, D., Diamond Relat. Mater. 12, 298 (2003)Google Scholar
10. Patterson, D. E., Chu, C. J., Bai, B. J., Komplin, N. J., Hauge, R. H., and Margrave, J. L., in Applications of Diamond Films and Related Materials, Ed. by Tzeng, Y., Yoshikawa, M., Murakawa, M., Feldman, A., Elsevier Science B.V., Amsterdam, Netherlands, 1991, p. 569.Google Scholar
11. Barber, G. D. and Yarbrough, W. A., J. Am. Ceram. Soc. 80, 1560 (1997)Google Scholar
12. Latto, M.N., Ripley, D. J., May, P.W., Diamond Relat. Mater. 9, 1181 (2000)Google Scholar
13. Farrer, R. G., Solid State Commun. 7, 685 (1969)Google Scholar
14. Koizumi, S., Teraji, T., Kanda, H., Diamond Relat. Mater. 9, 935 (2000)Google Scholar
15. Prawer, S., Uzan-Saguy, C., Braunstein, G., Kalish, R., Appl. Phys. Lett. 63, 2502 (1993)Google Scholar
16. Prins, J. F., Phys. Rev. B 61, 7191 (2000)Google Scholar
17. Gupta, S., Mart, A.ínez, Weiner, B. R., and Morell, G., Appl. Phys. Lett. 81, 283 (2002)Google Scholar
18. Eaton, S. C., Evstefeeva, Y. E., Angus, J. C., Anderson, A. B., Pleskov, Y. V., Russ. J. Electrochem. 39, 170 (2003)Google Scholar
19. Miyazaki, T., Okushi, H., Diamond Relat. Mater. 10, 449 (2001)Google Scholar
20. Saada, D., Adler, J., Kalish, R., Appl. Phys. Lett. 77, 878 (2000)Google Scholar
21. Gupta, S., Weiner, B. R., and Morell, G., Appl. Phys. Lett. 80, 1471 (2002)Google Scholar
22. Ilie, A., Ferrari, A. C., Yagi, T. and Robertson, J., Appl. Phys. Lett. 76, 2627 (2000)Google Scholar
23. Gupta, S., Weiner, B. R., Weiss, B. L., Morell, G., Appl. Phys. Lett. 79, 3446 (2001)Google Scholar
24. Gupta, S., Weiner, B. R. and Morell, G., Diamond Relat. Mater. 10, 1968 (2001)Google Scholar
25. Dennis, John. E. and Schnabel, Robert B., Numerical Methods for Unsconstrained Optimization and Non-linear Equations, Prentice-Hall, 1983.Google Scholar
26. Nemanich, R.J., Glass, J.T., Luckovsky, G., Schroder, R. E., J. Vac. Sci. Technol. A6, 1783 (1988).Google Scholar
27. Waite, M.M. and Shah, S.I., Appl. Phys. Lett. 60, 2344 (1992)Google Scholar
28. Gupta, S., Weiss, B.L., Weiner, B. R., Pilione, L., Badzian, A., Morell, G., J. Appl. Phys. 92, 3311 (2002)Google Scholar