Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T00:32:03.005Z Has data issue: false hasContentIssue false

Study on the Filling Fraction Limit of Impurities in CoSb3

Published online by Cambridge University Press:  01 February 2011

X. Shi
Affiliation:
xshi@mail.sic.ac.cn, China, People's Republic of
Wenqing Zhang
Affiliation:
wqzhang@mail.sic.ac.cn
Lidong Chen
Affiliation:
cld@mail.sic.ac.cn, China, People's Republic of
Jihui Yang
Affiliation:
jihui.yang@gm.com, United States
Get access

Abstract

Complex crystals such as skutterudites have interstitial voids in the lattice that can be filled by various impurity atoms. The filling fraction limit (FFL) for the intrinsic voids in the lattice of CoSb3 is studied by density functional methods. The FFL is shown to be determined not only by the interaction between the impurity and host atoms but also by the formation of secondary phases between the impurity atoms and one of the host atoms. A model is proposed to quantitatively explain the phenomenon. The predicted FFLs for Ca, Sr, Ba, La, Ce, and Yb in CoSb3 are in excellent agreement with reported experimental data. Detailed analysis reveals the existence of a quantitative relationship between the repulsive interaction of impurity atoms and their charge state. A correlation between the FFL of an impurity atom and its charge state and electronegativity is discovered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, G., Dresselhaus, M. S., Dresselhaus, G., Fleurial, J. -P., and Caillat, T., Inter. Mater. Rev. 48, 1 (2003), and references therein.Google Scholar
2. Izhevskiy, V. A., Genova, L. A., Bressiani, J. C., Aldinger, F., J. Eur. Ceram. Soc. 20, 2275 (2000), and references therein.Google Scholar
3. Morelli, D. T., Meisner, G. P., Chen, B. X., Hu, S. Q., and Uher, C., Phys. Rev. B 56, 7376 (1997).Google Scholar
4. Nolas, G. S., Cohn, J. L., and Slack, G. A., Phys. Rev. B 58, 164 (1998).Google Scholar
5. Kuznetsov, V L, Kuznetsova, L A, and Rowe, D M, J. Phys.: Condens. Matter 15, 5035 (2003).Google Scholar
6. Lamberton, G. A. Jr, Bhattacharya, S., Littleton, R. T. IV, Kaeser, M. A., Tedstrom, R. H., Tritt, T. M., Yang, J., and Nolas, G. S., Appl. Phys. Lett. 80, 598 (2002).Google Scholar
7. Nolas, G. S., Kaeser, M., Littleton, R. T. IV, and Tritt, T. M., Appl. Phys. Lett. 77, 1855 (2000);Google Scholar
Yang, J., Morelli, D. T., Meisner, G. P., Chen, W., Dyck, J. S., and Uher, C., Phys. Rev. B 67, 165207 (2003).Google Scholar
8. Sales, B. C., Chakoumakos, B. C., and Mandrus, D., Phys. Rev. B 61, 2475 (2000).Google Scholar
9. Nolas, G. S., Takizawa, H., Endo, T., Sellinschegg, H., and Johnson, D. C., Appl. Phys. Lett. 77, 52 (2000).Google Scholar
10. Nolas, G. S., Yang, J., and Takizawa, Hirotsugu, Appl. Phys. Lett. 84, 5210 (2004).Google Scholar
11. Puyet, M., Lenoir, B., Dauscher, A., Dehmas, M., Stiewe, C., and Müller, E., J. Appl. Phys. 95, 4852 (2004).Google Scholar
12. Chen, L. D., Kawahara, T., Tang, X. F., Goto, T., Hirai, T., Dyck, J. S., Chen, W., and Uher, C., J. Appl. Phys. 90, 1864 (2001).Google Scholar
13. Løvvik, O. M., and Prytz, Ø., Phys. Rev. B 70, 195119 (2004).Google Scholar
14. Bertin, L., and Gatti, C., J. Chem. Phys. 121, 8983 (2004).Google Scholar
15. Kresse, G., and Joubert, J., Phys. Rev. B 59, 1758 (1999);Google Scholar
Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).Google Scholar
16. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996);Google Scholar
Kresse, G. and Hafner, J. Phys. Rev. B 47, 558 (1993).Google Scholar
17. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992), and references therein;Google Scholar
Singh, D. J., and Ashkenazi, J., Phys. Rev. B 46, 11570 (1992).Google Scholar
18. Hohenberg, P., and Kohn, W., Phys. Rev. B 136, 864 (1964);Google Scholar
Kohn, W., and Sham, L. J., Phys. Rev. B 140, A1133 (1965).Google Scholar
19. Gaskell, D. R., Introduction to the Thermodynamics of Materials, 3rd edition (Taylor & Francis, London, 1995).Google Scholar
20. Zhao, X. Y., Shi, X., Chen, L. D., the FFL for Sr in CoSb3 is at least 40% (unpublished).Google Scholar
21. Van de Walle, Chris G., and Neugebauer, J., Phys. Rev. Lett. 88, 066103 (2002);Google Scholar
Reuter, K., and Scheffler, M., Phys. Rev. B 65, 035406 (2001);Google Scholar
Zhang, W., Smith, J. R., and Evans, A. G., Acta Mat. 50, 3803 (2002).Google Scholar
22. Benard, J., editor, Adsorption on Metal Surfaces (Elsevier Scientific, Amsterdam, 1983).Google Scholar
23. Kliche, G., and Lutz, H. D., Infrared Phys. 24, 171 (1984).Google Scholar
24. Pauling, L., The Nature of the Chemical Bond, 3rd edition (Cornell University Press, Ithaca, 1960).Google Scholar
25. Shi, X., Zhang, W., Chen, L. D., et al. , (in preparation).Google Scholar
26. Sacher, E., and Currie, J. F., J. Electron Spectroscopy and Related Phenomena 46, 173 (1988);Google Scholar
Allred, A.L., and Rochow, E. G., J. Inorg. Nucl. Chem. 5, 264 (1958).Google Scholar
27. Lee, A. G., The Chemistry of Thallium (Elsevier, New York, 1971).Google Scholar