Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T14:12:14.396Z Has data issue: false hasContentIssue false

Subgap Absorption and Electrical Properties of Compositional Multilayers of a-Si:H and Alloys

Published online by Cambridge University Press:  21 February 2011

Norbert Bernhard
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, Fed. Rep. of Germany
Gottfried H. Bauer
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, Fed. Rep. of Germany
Get access

Abstract

Urbach tails and midgap absorption, as determined by PDS, and temperature dependent coplanar and sandwich conductivity were systematically investigated on compositional multilayers of a-Si:H and its alloys with Ge and C, under the main aspect of a critical evaluation with respect to a possible existence of quantum size effects. Both electronic well and barrier widths were varied, with and without keeping the mean composition of the multilayers constant. Neither the overall dependences of the Urbach slopes, nor of the conductivity activation energies and room temperature αdark values are consistent with a quantization picture. Other effects, as imposing on each other the own sublayer's degree of structural disorder, and adjustment of the Fermi level by charge transfer, play a dominant role and may feign quantum size effects, if in a multilayer series only variation of the well widths is considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bernhard, N., Dittrich, H., Bauer, G. H., J. Non-Cryst. Sol. 137&138, 1103 (1991)Google Scholar
2. Beaudoin, M., Arsenault, C. J., Meunier, M., J. Non-Cryst. Sol. 137&138, 1099 (1991)Google Scholar
3. Collins, R. W. and Huang, C.-Y., Phys. Rev. B 34, 2910 (1986)Google Scholar
4. Arsenault, C. J., Meunier, M., Beaudoin, M., Movaghar, B., J. Non-Cryst. Sol. 137&138, 1111 (1991)Google Scholar
5. Carreño, M. N. P., Pereyra, I., Komazawa, A., Arasaki, A. T., J. Non-Cryst. Sol. 114, 762 (1989)Google Scholar
6. Arce, R., Ley, L., Hundhausen, M., J. Non-Cryst. Sol. 114, 696 (1989)Google Scholar
7. Abeles, B. and Tiedje, T., Phys. Rev. Lett. 51, 2003 (1983)Google Scholar
8. Bernhard, N., Kirsch, M., Eigenschenk, R., Bollu, M., Wetzel, C., Müller, F., Schwarz, R., Mat. Res. Soc. Symp. Proc. 192, 237 (1990)Google Scholar
9. Amer, N. M. and Jackson, W. B., in Semiconductors and Semimetals, Vol. 21B, edited by Pankove, J. I. (Academic Press, Orlando et al., 1984) pp. 83112 Google Scholar
10. Asano, A., Ichimura, T., Ohsawa, M., Saku, H., Uchida, Y., J. Non-Cryst. Sol. 97&98, 971 (1987)Google Scholar
11. Wronski, C. R., Persans, P. D., Abeles, B., Appl. Phys. Lett. 49, 569 (1986)Google Scholar