Hostname: page-component-5f745c7db-j9pcf Total loading time: 0 Render date: 2025-01-06T07:17:02.174Z Has data issue: true hasContentIssue false

Subwavelength Terahertz Waveguide Using Negative Permeability Metamaterial

Published online by Cambridge University Press:  31 January 2011

Atsushi Ishikawa
Affiliation:
a-ishikawa@berkeley.edu, University of California, Berkeley, NSF Nanoscale Science and Engineering Center, Berkeley, California, United States
Shuang Zhang
Affiliation:
zhangs@berkeley.edu, University of California, Berkeley, NSF Nanoscale Science and Engineering Center, Berkeley, California, United States
Dentcho A Genov
Affiliation:
dgenov@LaTech.edu, University of California, Berkeley, NSF Nanoscale Science and Engineering Center, Berkeley, California, United States
Guy Bartal
Affiliation:
bartal@me.berkeley.edu, University of California, Berkeley, NSF Nanoscale Science and Engineering Center, Berkeley, California, United States
Xiang Zhang
Affiliation:
xzhang@me.berkeley.edu, University of California, Berkeley, NSF Nanoscale Science and Engineering Center, Berkeley, California, United States
Get access

Abstract

We propose a novel subwavelength terahertz (THz) waveguide using the magnetic plasmon polariton (MPP) mode guided by a narrow gap in a negative permeability metamaterial. Deep subwavelength wave-guiding (< λ/10) with a modest propagation loss (2.5 dB/λ) and group velocities down to c/21.8 is demonstrated in a straight waveguide, a 90-degree bend, and a splitter. The distinctive dispersions of the guided mode with positive and negative group velocities are explained analytically by considering the dispersive effective optical constants of the metamaterial. The proposed waveguiding system inherently has no cutoff for any core width and height, paving the way toward the deep subwavelength transport of THz waves for integrated THz device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Takahara, J., Yamagishi, S., Taki, H., Morimoto, A., and Kobayashi, T., Opt. Lett. 22, 475 (1997).Google Scholar
2 Economou, E. N., Phys. Rev. 182, 539 (1969).Google Scholar
3 Maier, S. A., Kik, P. G., Atwater, H. A., Meltzer, S., Harel, E., Koel, B. E., and Requicha, A. A. G., Nature Mater. 2, 229 (2003).Google Scholar
4 Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y., and Ebbesen, T. W., Nature (London) 440, 508 (2006).Google Scholar
5 Oulton, R., Sorger, V., Genov, D. A., Pile, D. F. P., and Zhang, X., Nat. Photon. 2, 496 (2008).Google Scholar
6 Wang, K. and Mittleman, D. M., Nature (London) 432, 376 Google Scholar
7 Maier, S. A., Andrews, S. R., Martin-Moreno, L., and Garcia-Vidal, F. J., Phys. Rev. Lett. 97, 176805 (2006).Google Scholar
8 Williams, C. R., Andrews, S. R., Maier, S. A., Fernandez-Dominguez, A. I., Martin-Moreno, L., and Garcia-Vidal, F. J., Nat. Photon. 2, 175 (2008).Google Scholar
9 Ishikawa, A., Tanaka, T., and Kawata, S., Phys. Rev. Lett. 95, 237401 (2005).Google Scholar
10 Zhang, S., Fan, W., Panoiu, N. C., Malloy, K. J., Osgood, R. M., and Brueck, S. R. J., Phys. Rev. Lett. 95, 137404 (2005).Google Scholar
11 Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D. A, Bartal, G., and Zhang, X., Nature (London) 455, 376 (2008).Google Scholar
12 Fang, N., Lee, H., Sun, C., and Zhang, X., Science 308, 534 (2005).Google Scholar
13 Cai, W., Chettiar, U. K., Kildishev, A. V., and Shalaev, V. M., Nat. Photon. 1, 224 (2007).Google Scholar
14 Liu, Z., Lee, H., Xiong, Y., Sun, C., and Zhang, X., Science 315, 1686 (2007).Google Scholar
15 Yen, T. J., Padilla, W. J., Fang, N., Vier, D. C., Smith, D. R., Pendry, J. B., Basov, D. N., and Zhang, X., Science 303, 1494 (2004).Google Scholar
16 Dolling, G., Enkrich, C., Wegener, M., Zhou, J. F., Soukoulis, C. M., and Linden, S., Opt. Lett. 30, 3198 (2005).Google Scholar
17 Tanaka, T., Ishikawa, A., and Kawata, S., Phys. Rev. B 73, 125423 (2006).Google Scholar
18 Ishikawa, A., Zhang, S., Genov, D. A., Bartal, G., and Zhang, X., Phys. Rev. Lett. 102, 043904 (2009).Google Scholar
19 Gollub, J. N., Smith, D. R., Vier, D. C., Perram, T., and Mock, J. J., Phys. Rev. B 71, 195402 (2005).Google Scholar
20 Johnson, P. B. and Christy, R.W., Phys. Rev. B 6, 4370 (1972).Google Scholar
21 Kuzel, P. and Petzelt, J., Ferroelectrics 239, 79 (2000).Google Scholar
22Dow Chemicals: http://www.dow.com/cyclotene/solution/highfreq.htm.Google Scholar
23 Dionne, J. A., Sweatlock, L. A., Atwater, H. A., and Polman, A., Phys. Rev. B, 73, 035407 (2006).Google Scholar
24 Liu, H., Genov, D. A., Wu, D. M., Liu, Y. M., Steele, J. M., Sun, C., Zhu, S. N., and Zhang, X., Phys. Rev. Lett. 97, 243902 (2006).Google Scholar
25 Veronis, G. and Fan, S., Appl. Phys. Lett. 87, 131102 (2005).Google Scholar