Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T17:28:39.286Z Has data issue: false hasContentIssue false

Sulfone Containing Clay Electrolytes and Their Potential for Li-Rechargeable Batteries

Published online by Cambridge University Press:  10 February 2011

Gregory J. Moore
Affiliation:
Chemistry Department and Materials Research Center, SUNY at Binghamton Binghamton, NY 13902-6016
M. Stanley Whittingham
Affiliation:
Chemistry Department and Materials Research Center, SUNY at Binghamton Binghamton, NY 13902-6016
Get access

Abstract

Clays have been synthesized and several types of molecules have been intercalated into them to enhance their ionic conductivity. The clay has the molecular formula of Litaeniolite, Li(Mg2Li)Si4O10F2, and the inserted molecules include PEO and two varieties of sulfone, tetramethylene sulfone and ethylmethyl sulfone. These have been made in the interest of electrolytes in lithium secondary batteries in order to produce a truly solid state cell. The products have been thoroughly characterized by x-ray diffraction to verify the uptake of the molecules into the layers, thermal analysis to observe the stabilization of the intercalated molecules, along with impedance measurements to test their conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Owen, J., Chemistry and Industry 1, p. 71 (1988).Google Scholar
2. Xu, K. and Angell, C. A., J. Electrochem. Soc. 145, No. 4, p. L70 (1998).Google Scholar
3. Kobayashi, Y., Shishikura, T., Konauma, H., Sakai, T., Nakamura, H., and Takeuchi, M., U.S. Pat. 4,740,436 (1998).Google Scholar
4. Abraham, K. M. and Alamgir, M., Solid State Ionics 70/71, p. 20 (1994).Google Scholar
5. Huq, P., Koksbang, R., Tonder, P. E., and Farrington, G. C., in Recent Advances in Fast Ion Conducting Materials and Devices, edited by Chowdary, B.V.R., Liu, Q., and Chen, L., World Scientific, Singapore, 1990, p. 63.Google Scholar
6. Munshi, M. Z. A. and Owens, B. B., Solid State Ionics 26, p. 41 (1988).Google Scholar
7. Wieczorek, W., Lipka, P., Zukowska, G., and Wycislik, H., J. Phys. Chem. B 102, p. 6968 (1998).Google Scholar
8. Appetecchi, G. B., Dautzenberg, G., and Scrosati, B., J. Electrochem. Soc. 143, No. 1, p. 6 (1996).Google Scholar
9. Xue, R., Huang, H., Huang, X., and Chen, L., Solid State Ionics 74, p. 133 (1994).Google Scholar
10. Osaka, T., Momma, T., Nishimura, K., Kakuda, S., and Ishii, T., J. Electrochem. Soc. 141, No. 8, p. 1994 (1994).Google Scholar
11. Evans, J., Vincent, C. A., and Bruce, P. G., Polymer 28, p. 2324 (1987).Google Scholar
12. Butruille, J-R., Michot, L. J., Barres, O., and Pinnavaia, T. J., Journal of Catalysis 139, p. 664 (1993).Google Scholar
13. Ghosh, A. K. and Kydd, R. A., Catal. Rev.-Sci. Eng. 27, p. 539 (1985).Google Scholar
14. Whittingham, M. S. and Huggins, R.A., J. Chem. Phys. 54, p. 414 (1971).Google Scholar
15. Whittingham, M. S. and Huggins, R. A., Natl. Bur. Stand. (NBS) Spec. Publ. (US) 364, p. 139.Google Scholar
16. Ratner, M. A. and Schriver, D. F., Chem. Rev. 88, p. 109 (1988).Google Scholar
17. Berthier, C., Gorecki, W., Minier, M., Armand, M. B., Chabagno, J. M., and Rigaud, P., Solid State Ionics 11, p. 91 (1983)Google Scholar
18. Vaia, R. A., Vasudevan, S., Krawiec, W., Scanlon, L. G., and Gianellis, E. P., Adv. Mater. 7, No. 2, p. 154 (1995).Google Scholar
19. Ruiz-Hitzky, E. and Aranda, P., Adv. Mater. 2, No. 11, p. 545 (1990).Google Scholar
20. Moore, G. J., Zavalij, P. Y., and Whittingham, M. S. in Nanophase and Nanocomposite Materials II, edited by Komarneni, S., Parker, J. C. and Wollenberger, H. J. (Mater. Res. Soc. Proc. 457, Pittsburgh, PA 1996)Google Scholar
21. Alpen, U. V., Rabenau, A., and Talat, G.H., Appl. Phys. Lett. 30, p. 621 (1977).Google Scholar