Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T10:00:54.698Z Has data issue: false hasContentIssue false

Suppression of the Relaxor State in Ca-Doped SrTiO3 with Modest Pressure

Published online by Cambridge University Press:  01 February 2011

Eugene L. Venturini
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1421
George A. Samara
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1421
Wolfgang Kleemann
Affiliation:
Gerhard Mercator Universitat, Angewandte Physik, D-47048 Duisburg, Germany
Get access

Abstract

We report very large changes under modest hydrostatic pressure in the nature of the relaxor ferroelectric (FE) response for a single crystal of SrTiO3 doped with 0.7 mol % CaTiO3. The Ca cation dopants generate polar clusters within the FE soft mode, readily polarized host crystal. At ambient pressure the cluster size increases with decreasing temperature, leading to a dispersive (relaxor) state below ∼18 K. However, the application of modest pressure stiffens the soft mode frequency of the host lattice and reduces cluster growth, thereby decreasing the glass-like transition temperature at roughly –35 K/kbar. Above 0.5 kbar there is no evidence for the relaxor state; rather, a temperature- and frequency-independent dielectric response reflecting quantum paraelectric behavior evolves. These results demonstrate the extreme sensitivity to pressure of relaxors with low transition temperatures, i.e., in the quantum regime where characteristic energies are small.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Müller, K. A. and Burkard, H., Phys. Rev. B 19, 3593 (1979).Google Scholar
2. Uwe, H. and Sakudo, T., Phys. Rev. B 13, 271 (1976).Google Scholar
3. Bednorz, J. G. and Müller, K. A., Phys. Rev. Lett. 52, 2289 (1984).Google Scholar
4. Vugmeister, B. E. and Glinchuk, M. D., Rev. Mod. Phys. 62, 993 (1990).Google Scholar
5. Bianchi, U., Dec, J., Kleemann, W. and Bednorz, J. G., Phys. Rev. B 51, 8737 (1995).Google Scholar
6. Kleemann, W., Albertini, A., Kuss, M. and Lindner, R., Ferroelectrics 203, 57 (1996).Google Scholar
7. Kleemann, W., Dec, J., Wang, Y. G., Lehnen, P. and Prosandeev, S. A., J. Phys. Chem. Solids 61, 167 (2000).Google Scholar
8. Smolenskii, G. A. and Agranovskaya, A. I., Sov. Phys. Tech. Phys. 3, 1380 (1958).Google Scholar
9. Samara, G. A. and Peercy, P. S. in Solid State Physics, edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic Press, New York, 1981), vol. 36, pp. 2643.Google Scholar
10. Samara, G. A. in Solid State Physics, edited by Ehrenreich, H. and Spaepen, F. (Academic Press, New York, 2001), vol. 56, pp. 4559.Google Scholar
11. Samara, G. A., Phys. Rev. 151, 378 (1966).Google Scholar