Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T10:02:20.908Z Has data issue: false hasContentIssue false

Surface Chemistry of CVD Reactions Studied by Molecular Beam/Surface Scattering

Published online by Cambridge University Press:  25 February 2011

Ming L. Yu
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
Get access

Abstract

A molecular beam/surface scattering experiment in an ultrahigh vacuum is conceptually a simulation of a CVD reactor without the interference from gas phase and wall reactions. The surface chemistry can be studied in real-time during the deposition reaction at the desired temperature. In our experiment, we used pulsed molecular beams of the reactants and a mass spectrometer to monitor In real-time the reaction products evolving from the substrate surface. With this arrangement, the reaction probability of the molecules can readily be determined by measuring the unreacted fraction of the molecular beam. The reaction pathways can be deduced from the Identification of the reaction products, while their time-evolutions give the kinetic parameters. We shall illustrate this technique by our study on the reactions of trimethylgallium and triethylgallium on GaAs as related to the metalorganic CVD and atomic layer epitaxy of GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuech, T. F., Materials Science Reports, 2, 1 (1987).Google Scholar
2. Jensen, K. F., Chem. Eng. Sci. 42, 923 (1987).Google Scholar
3. King, D. A., CRC Critical Reviews in Solid State and Materials Sciences, 7 167 (1978).Google Scholar
4. Eldridge, B. N. and Yu, M. L., Rev. Sci. Instrum. 58, 1014 (1987).Google Scholar
5. King, D. A. and Wells, M. G., Surf. Scd. 29 454 (1972).Google Scholar
6. Yu, M. L. and Eldridge, B. N., Phys. Rev. Lett. 58, 1691 (1987).Google Scholar
7. Yu, M. L., Eldridge, B. N., and Joshi, R. V., in Proceedings of the 1988 Workshop on Tungsten and Other Refractory Metals for VLSI Applications, edited by Blewer, R. S. and McConica, C. M. (MRS, Pittsburgh, PA, 1989) p. 221.Google Scholar
8. Nishizawa, J, Kurabayashi, T., Abe, H., and Nozoe, A., Surf. Sci. 185, 249 (1987).Google Scholar
9. Creighton, J. R., Surf. Sci. 234, 287 (1990).Google Scholar
10. Donnelly, V. M. and McCaulley, J. A., Surf. Scd. 238, 34 (1990).Google Scholar
11. Memmert, U. and Yu, M. L., Appl. Phys. Lett. 56, 1883 (1990).Google Scholar
12. Yu, M. L., Memmert, U., and Kuech, T. F., Appl. Phys. Lett. 55, 1011 (1989).Google Scholar
13. Nishizawa, J., Kurabayashi, T., Abe, H., and Sakurai, N., J. Vac. Sci. Technol. A5, 1572 (1987).Google Scholar
14. Creighton, J. R., Lykke, K. R., Shamamian, V. A., and Kay, B. D., Appl. Phys. Lett. 57, 279 (1990).Google Scholar
15. Murrell, A. J., Wee, A. T. S., Fairbrother, D. H., Singh, N. K., Foord, J. S., Davies, G. J., and Andrews, D. A., J. Appl. Phys. 68, 4053 (1990).Google Scholar
16. Martin, T. and Whitehouse, C. R., J. Crystal Growth, 105, 57 (1990).Google Scholar
17. McCaulley, J. A., McCrary, V. R., and Donnelly, V. M., J. Phys. Chem. 93, 1148 (1989).Google Scholar
18. Yamashita, S., Bull. Chem. Soc. Japan, 47 1373 (1974).Google Scholar