Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T14:14:12.834Z Has data issue: false hasContentIssue false

Surface Core-Level Photoelectron Diffraction of Surface Reconstructions

Published online by Cambridge University Press:  15 February 2011

Eli Rotenberg
Affiliation:
Department of Physics, University of Oregon, Eugene OR 94703
J. D. Denlinger
Affiliation:
Department of Physics, University of Wisconsin, Milwaukee WI 53211
S. D. Kevan
Affiliation:
Department of Physics, University of Oregon, Eugene OR 94703
B. P. Tonner
Affiliation:
Department of Physics, University of Wisconsin, Milwaukee WI 53211
Get access

Abstract

Experimental surface core-level shifts (SCLSs) aid in understanding the roles of altered electronic and screening properties at reconstructed semiconductor surfaces.1 Because of unresolved theoretical issues, the assignment of SCLSs has often remained controversial even though the surface geometry has been completely determined with traditional probes.

Angular- and energy-dependent x-ray photoelectron diffraction (XPD) of each chemically resolved surface core-level electron can be used to discriminate the structure around each chemically shifted species. However, this technique requires tunability, high energy resolution to separate the SCLSs from the bulk core-levels, and high photon flux in order to gather large amounts of data in a reasonable time. Using the newly commissioned spectromicroscopy beamline 7.0 at the Advanced Light Source, we have acquired chemically-resolved XPD data for Si(111) 7×7 for several photon energies, and by examination of forward-focusing peaks we can draw tentative conclusions about the atomic origins of each core-level shifted peak.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Egelhoff, F. Jr., CRC Crit. Rev. Sol. State Matl. Sci. 16, 213 (1990).Google Scholar
2 Barton, J. J., Phys. Rev. Lett. 61(12), 1356 (1988).Google Scholar
3 Tong, S. Y., Huang, H., and Wei, C. M., Phys. Rev. B 46(4), 2452 (1992).Google Scholar
4 Wu, H., Lapeyre, G. J., Huang, H., amd Tong, S. Y., Phys. Rev. Lett. 71(2), 251 (1993).Google Scholar
5 Barton, J. J., Phys. Rev. Lett. 67(22), 3106 (1991).Google Scholar
6 Terminello, L. J., Barton, J. J., and Lapiano-Smith, D. A., Phys. Rev. Lett. 70(5), 599 (1993).Google Scholar
7 . Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
8 Takayanagi, K., Tanishiro, Y., Takahashi, S., and Takahashi, M., J. Vac. Sci. Tecnol. A 3, 1502 (1985); Surf. Sci. 164, 367 (1985).Google Scholar
9 Himpsel, F. J., Heimann, P., Chiang, T.-C., and Eastman, D. E., Phys. Rev. Lett. 45 (13), 1112 (1980).Google Scholar
10 . Karlsson, C. J., Landemark, E., Johansson, L. S. O., Karlsson, U. O., and Uhrberg, R. I. G., Phys. Rev. B 41, 1521 (1990).Google Scholar
11 Miller, T., Hsieh, T. C., and Chiang, T.-C., Phys. Rev. B 33, 6983 (1986).Google Scholar
12 Karlsson, C. J., Landemark, E., Chao, Y.-C., and Uhrberg, R. I. G., Phys. Rev. B 50 (8), 5767 (1994).Google Scholar
13 LeLay, G. and Fontaine, M., Phys. Rev. Lett. 72 (23), 1994.Google Scholar
14 Carlisle, A., Miller, T., and Chiang, T.-C., Phys. Rev. B 45(7),3811 (1992); J. A. Carlisle, M. T. Sieger, T. Miller, and T.-C. Chiang, Phys. Rev. Lett. 71, 2955 (1993).Google Scholar
15 Huang, H., Tong, S. Y., Packard, W. E., and Webb, M. B., Phys. Lett. A 130 (3), 166 (1988).Google Scholar
16 Qian, G. X. and Chadi, D. J., Phys. Rev. B 35 (5), 1288 (1987).Google Scholar
17 Brommer, K. D., Needels, M., Larson, B. E., and Joannopoulos, J. D., Phys. Rev. Lett. 68 (9), 1355 (1992).Google Scholar
18 Chambers, S. A., Advances in Physics, 1991 40, 357 (1991).Google Scholar