Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T01:12:04.705Z Has data issue: false hasContentIssue false

Surface Diffusion in Interactive Overlayers:

Published online by Cambridge University Press:  25 February 2011

M. C. Tringides*
Affiliation:
Department of Physics, Iowa State University, Ames Laboratory Ames, IA 50011
Get access

Abstract

The analysis of surface diffusion in interactive overlayers deviates from the simple picture of diffusion as a random walk. Non-equilibrium processes (the growth of ordered or the disordering of already ordered islands) under constant coverage or deposition rate, can be easily used to measure surface diffusion. For the 0/W(110) system, such experiments measured an ordering activation energy ED=0.6±0.05 eV which is different from the one measured in disordering experiments ED=1 ± 0.05 eV. The difference can be accounted for by the interactions. Ordering experiments in the Ag/Si(111)-√3x√3R30 system under constant deposition, suggest the presence of non-thermal mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gomer, R., Reports Progr. Phys. 53, 917 (1990).CrossRefGoogle Scholar
[2] Mo, Y. W., Kleiner, J., Webb, M. B., and Lagally, M. G., Phys. Rev. Lett. 66, 1998 (1991).CrossRefGoogle Scholar
[3] Raynerd, G., Doust, T. N., and Venables, J. A., Surf. Sci. 261, 251 (1992).Google Scholar
[4] Tringides, M. and Gomer, R., Surf. Sci. 155, 254 (1985).Google Scholar
[5] Reed, D. A. and Ehilich, G., Surf. Sci. 105, 603 (1981).Google Scholar
[6] Tringides, M. C. and Gomer, R., Surf. Sci. 265, 263 (1992).Google Scholar
[7] Mouritsen, O. G., in Kinetics of Ordering and Growth of Surfaces, ed. by Lagally, M. G., Plenum Press, New York, 1990.Google Scholar
[8] Evans, J. W. and Hoffman, D. K., Phys. Rev. B 30, 2704 (1984).Google Scholar
[9] Egelhoff, W. F. and Jacob, I., Phys. Rev. Lett. 62, 921 (1989).CrossRefGoogle Scholar
[10] Ernst, H. J., Fabre, F., Lapujoulade, J., Phys. Rev. B 46, 1929 (1992).Google Scholar
[11] De Miguel, J. J., Cebollada, A., Gallego, J. M., Ferron, J., and Ferrer, S., J. Crystal Growth 88, 442 (1988).Google Scholar
[12] Tringides, M. C., Phys. Rev. Lett. 65, 1372 (1990).Google Scholar
[13] Tringides, M. C., in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis: Phase Transitions and Adsorbate Restructuring at Metal Surfaces, ed. by King, D. A. and Woodruff, D. P. (in press).Google Scholar
[14] Roos, K. and Tringides, M. C. (submitted).Google Scholar
[15] Sakamoto, T., Sakamoto, K., Miki, K., Okumura, H., Yoshida, S., Tokumoto, H., in Kinetics of Ordering and Growth at Surfaces, ed. by Lagally, M. G., Plenum Press, New York, 1990.Google Scholar
[16] Van Hove, J. M. and Cohen, P. I., J. Crystal Growth 81, 13 (1987).Google Scholar